※ 考生請注意：本試題不可使用計算機

1．The prismatic bar AD of length 3 L is supported as shown．The bar having the cross－sectional area A^{\bullet} and Young＇s modulus E is subjected to axial loads P and Q at points B and C ，respectively．It is known that the displacements at points B and C are $\delta_{B}=\Delta$ and $\delta_{C}=2 \Delta$ ，respectively．（a）Find the axial loads P and Q ．（15\％）（b）Calculate the $\tau_{\text {max }}$ occurred in the bar $\mathrm{AD} .(10 \%)$（Answers should be expressed in terms of A^{\bullet}, E, L, and Δ ．）

2．The property of an element is considered to be linearly isotropic．（a）Show that the bulk modulus K for the element is $K=E /[3(1-2 v)]$ where E is the Young＇s modulus and v is the Poisson＇s ratio．（15\％）（b）Determine the unit volume change for the element with the element being subjected to the normal stress σ and shear stress τ as shown in the figure．（10\％）（Express answer in terms of $K, \sigma, \tau, \cdots e t c$ ．）

編號： 109
系所組別：土木工程學系甲，丙，丁組
考試科目：材料力學
※ 考生請注意：本試題不可使用計算機

3．（a）Show that the maximum shear stress for a beam with a solid circular cross section is $\tau_{\max }=4 \mathrm{~V} /(3 \mathrm{~A})$ where V is the shear force and A is the area of the cross section．（15\％）（b）What assumptions will be made in obtaining the maximum shear stress？（10\％）

4．A beam of length 2 L and height h has sliding supports at both ends as shown．The sliding support permits vertical movement but no rotation．The beam has constant flexural rigidity $E I$ ．The coefficient of thermal expansion of the beam is α ．The beam is subjected to a temperature change such that the temperature at the top is T_{1} and at the bottom is $T_{2}\left(T_{2}>T_{1}\right)$ ．The temperature varies linearly between the top and bottom of the beam．（a）Determine the reaction at support A．（15\％）．（b）Determine the deflection at support A．（10\％）

