編號: 105 國立成功大學 103 學年	度碩士班招生考試試題 共一頁,第一頁
系所組別:土木工程學系甲、乙、丁組	
考試科目:工程數學	考試日期:0222,節次:3
※ 考生請注意:本試題不可使用計算機。 請	於答案卷(卡)作答,於本試題紙上作答者,不予計分。
1. Solve the following ordinary differential equation	ons.
(a) $yy' + xy^2 = x^3$.	(10%)
(b) $y'' - y - \frac{2}{2}$	(10%)
$e^{x}-1$	
2. Find the general solution of the following partial differential equations.	
(a) $y \frac{\partial z}{\partial z} + x \frac{\partial z}{\partial z} = 0$	(10%)
$\int \partial x + \partial y$	(

(b)
$$\frac{\partial^2 u}{\partial x^2} - 4 \frac{\partial^2 u}{\partial x \partial y} + 4 \frac{\partial^2 u}{\partial y^2} = 0$$
 (10%)

3. Problem: A bar has length L, density ρ , cross section area A, Young's modulus E. Its end x = 0 is fixed and a mass m is attached to its free end x = L. The bar initially is stretched linearly by moving m a distance δ to the right; at time t = 0 the system is released from rest. (Assume that ρ , A, E are constants.)

$$\begin{array}{c} m \\ \bullet \\ \bullet \\ L \end{array}$$

(a) Derive the governing equation of the axial displacement $u(x,t)$ of the bar.	(10%)
(b) State the boundary conditions of this problem.	(5%)
(c) State the initial conditions of this problem.	(5%)
4. (a) Show that $u(x, y) = 2x - x^3 + 3xy^2$ is harmonic in some domain.	(5%)
(b) Find a harmonic conjugate $v(x, y)$.	(5%)
(c) For analytic function $f(z) = u(x, y) + iv(x, y)$, determine $f'(z)$.	(10%)
5. (a) Show that $\mathbf{F} = 2xy\mathbf{i} + (x^2 + 2yz)\mathbf{j} + (y^2 + 1)\mathbf{k}$ is a conservative vector field.	(5%)
(b) Find a scalar function $\phi(x, y, z)$, such that $\mathbf{F} = -\nabla \phi$.	(5%)
(c) Determine the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $C : \cos t\mathbf{i} + \sin t\mathbf{j} + 2t\mathbf{k}, 0 \le t \le \frac{\pi}{2}$	(10%)