※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

Make rational assumptions if needed．

1．Answer the following questions briefly with texts and／or figures：（30 pts）
（1）Define N_{60} and list the necessary corrections to correlate the measured SPT－N value and N_{60} ．（ 6 pts ）
（2）Define the logarithmic spiral surface in the radial shear zone of shallow foundations cases．（ 6 pts ）
（3）Define the K_{0} condition and describe how to evaluate the K_{0} value for OC soils．（ 6 pts ）
（4）List the conditions that require pile foundations．（ 6 pts ）
（5）Describe how to determine the allowable bearing capacity of shallow foundations．（6 pts）

2．Answer the following questions related to lateral earth pressures．（ 30 pts ）
（1）Briefly describe how to implement the Mononobe－Okabe method to evaluate the active earth pressure for earthquake conditions．（ 8 pts ）
（2）List the assumptions of the apparent pressure envelopes by Peck（1969）．（8 pts）
（3）Draw the earth－pressure envelope and determine the strut loads at level A，B，and C in Fig．1．（14 pts）

3．Answer the following questions related to shallow foundations．（ 20 pts ）
（1）Draw the failure surface assumed in Terzaghi＇s bearing capacity theory for rough，rigid strip foundation in $\phi=0$ soil．（ 8 pts ）
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
（2）For saturated clay with $\phi=0$ and a vertical loading，the shape and depth factors associated with cohesion are $F_{c s}=1+\frac{B}{L}\left(\frac{N_{q}}{N_{c}}\right)$ and $F_{c d}=1+0.4\left(\frac{D_{f}}{B}\right)$ ，respectively，and where B＝width，L＝length， $\mathrm{D}_{\mathrm{f}}=e \mathrm{embed} \mathrm{ded}$ depth．Derive the factor of safety against bearing capacity failure for a compensate foundation subjected to a vertical loading Q on a saturated clay stratum．（12 pts）

4．Answer the following questions related to pile foundations．（ 20 pts ）
（1）The section of a 4×4 group pile in a layered saturated clay is shown in Fig．2．The piles are square in cross section $(0.4 \mathrm{~m} \times 0.4 \mathrm{~m})$ ．Use the Meyerhof＇s method for tip resistance and α－method for frictional resistance with $\alpha=0.6\left(\frac{\bar{\sigma}_{0}^{\prime}}{c_{u}}\right)$ to determine the ultimate load－bearing capacity of a single pile．（ 10 pts ）
（2）Determine the allowable load－bearing capacity of the pile group in（1）with $\mathrm{FS}=3 .(10 \mathrm{pts})$

Fig． 2

