國立成功大學 110學年度碩士班招生考試試題

編 號: 97

系 所:土木工程學系

科 目:基礎工程

日 期: 0202

節 次:第1節

備 註: 可使用計算機

國立成功大學 110 學年度碩士班招生考試試題

系 所:土木工程學系 考試科目:基礎工程

考試日期:0202,節次:1

第1頁,共2頁

編號: 97

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 Caution: Mark the final answer of each question clearly.

Fig. 1

- Answer the following questions concerning pile foundation with supplementary drawings if needed. (30%).
 - Give an example of drilled piles (categorized by the installation method) and also explain how it can prevent collapse of soil into the borehole. (5%)
 - (2) Define the friction pile and the point-bearing (endbearing) pile (10%)
 - (3) Fig. 1 shows the plan view of a group pile foundation. Given: diameter of piles (D) = 400 mm, center-to-center spacing of piles (d) = 1000 mm, and length of piles = 16 m Piles are embedded in a saturated homogeneous clay ($s_u = 50 \text{ kN/m}^2$). Determine the ultimate load-carrying capacity Q_u of the pile group.

(Hint: calculate Q_u with the group piles regarded as individual piles and $\sim 100 \text{ kN/m}^2$ as a block, respectively; then pick the controlling one. Use α method and Table 1 to determine bearing capacity from skin friction. End bearing capacity factor $N_c^* = 9$ both for single pile and block) (15%).

 For the cantilever retaining wall (γ_{concrete} = 24 kN/m³), let the following data be given. Wall dimensions:,

$$H = 9 \text{ m}, D = 1 \text{ m}, \alpha = 0^{\circ}$$

 $x_1 = 0.5 \text{ m}, x_2 = 1 \text{ m}, x_3 = 1.5 \text{ m}, x_4 = 3 \text{ m}, x_5 = 10^{\circ}$

$$x_1 = 0.5 \text{ m}, x_2 = 1 \text{ m}, x_3 = 1.5 \text{ m}, x_4 = 3 \text{ m}, x_5 = 1 \text{ m}.$$

Soil properties:

$$\gamma_1 = 17.0 \text{ kN/m}^3$$
, $\phi_1' = 35^\circ$, $c_1' = 0$;

$$\gamma_2 = 19.0 \text{ kN/m}^3$$
, $\phi_2' = 20^\circ$, $c_2' = 20 \text{ kN/m}^2$.

Angle of friction and adhesion between soil and the base slab: $\delta' = (2/3) \phi'$; $c_{\alpha'} = (2/3) c'$

Answer the following questions (35%):

- (1) Calculate the <u>Rankine active force per unit length</u>
 of the wall (with the simplified assumption for design), and the corresponding <u>overturning</u>
 moment about the toe. (10%)
- Calculate the factor of safety against overturning (ignore P_p). (10%)
- (3) Calculate the factor of safety against sliding (ignore P_p). (10%)
- (4) Is the wall safe? If not, suggest one way to improve. (5%)

編號: 97

國立成功大學 110 學年度碩士班招生考試試題

系 所:土木工程學系 考試科目:基礎工程

考試日期:0202,節次:1

第2頁,共2頁

- 3. Fig. 3 shows an embedded mat foundation under a vertical load. Answer the following questions (35%):
 - (1) Determine the average net pressure on soil caused by the mat foundation (5%)
 - (2) Use general bearing capacity equation to determine the net ultimate bearing capacity of this foundation; also check if it meets the required factor of safety for long-term loading based on the answer of (1) (only considering the contribution of sand layer; note the influence of the groundwater table!) (15%)
 - (3) Assuming the mat foundation can be regarded as a uniformly loaded flexible rectangular area, estimate the stress increase caused by the mat foundation below its center at the middle of clay layer based on the 2:1 method (5%).
 - (4) Given: Cc = 0.48 and Cs = 0.25 Cc. Estimate the consolidation settlement of the clay layer under the center of the mat (using the stress increase at the middle of the clay layer as the average) (10%).

