國立成功大學 112學年度碩士班招生考試試題

編 號: 103

系 所: 土木工程學系

科 目: 工程統計

日期:0206

節 次:第3節

備 註:可使用計算機

編號: 103

國立成功大學 112 學年度碩士班招生考試試題

系 所:土木工程學系

考試科目:工程統計

考試日期:0206,節次:3

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Let X be a discrete random variable with a cumulative distribution function (cdf) shown below. (5 points each)

$$F(x) = \begin{cases} 0 & x < 1 \\ 0.30 & 1 \le x < 3 \\ 0.40 & 3 \le x < 4 \\ 0.45 & 4 \le x < 6 \\ 0.60 & 6 \le x < 12 \\ 1 & 12 \le x \end{cases}$$

- (1) What is the probability mass function (pmf) of X?
- (2) What is $P(3 \le X \le 6)$?
- (3) What is $P(4 \le X)$?
- (4) What is the variance of X?
- 2. The weekly demand for water (in 100,000s of tons) from a particular city is a random variable of X with the probability density function (pdf) as follows: (5 points each)

$$f(x) = \begin{cases} 2\left(1 - \frac{1}{x^2}\right) & 1 \le x \le 2\\ 0 & otherwise \end{cases}$$

- (1) What is the cdf of X?
- (2) What is the expected value of X?
- (3) What is the variance of X?
- (4) Obtain an expression for the (100p)th percentile. What is the median value of X?
- 3. The following summary provides information for the fracture strengths (MPa) of n = 169 metal bars manufactured in a particular process: $\bar{x} = 89.1$, s = 3.73. (5 points each)
 - (1) What is the confidence interval (CI) for true average fracture strength with a confidence level of 95%?
 - (2) Does it appear that true average fracture strength is precisely estimated using the above interval? Why?
 - (3) What are the ways to reduce the margin of error for CI?
 - (4) Suppose the investigators had believed a priori that the population standard deviation was about 4 MPa.

 Based on this supposition, how large a sample would have been required to estimate m to within 0.5 MPa with 95% confidence?

Values Provided for Your Calculations

				T								
Z	1.64	1.96	2.58	to.025, 5	t _{0.025, 4}	to.os, s	F _{0.05,2,3}	F _{0.05,3,2}	F _{0.025,4,2}	F _{0.025,4,3}	F _{0.025,3,2}	F _{0.025,3,4}
Φ(z)	0.95	0.975	0.995	2.571	2.776	2.015	19.00	19.16	39.25	15.10	39.12	9.98

編號: 103

國立成功大學 112 學年度碩士班招生考試試題

系 所:土木工程學系

考試科目:工程統計

考試日期:0206,節次:3

第2頁,共2頁

- 4. The measurements on viscosity (cP) for specimens of a certain grade of highway materials are as follows: 2781, 2900, 3013, 2856, and 2888. Suppose that for a particular application it is required that true average viscosity be 3000. Note: $\bar{x} = 2887.6$, s = 84. (5 points each)
 - (1) State the relevant hypotheses.
 - (2) Calculate the test statistic.
 - (3) State the rejection region using α =0.05.
 - (4) Make your conclusion. Does this requirement appear to have been satisfied?
- 5. The physical properties of a certain type of soils are analyzed using a quadratic regression of y = bulk density (i.e., bulkdens) on x = moisture content (i.e., moiscont). The following output for the quadratic model is obtained from software called Minitab. Note: The quadratic predictor is named as contsqd. (5 points each)

The regression equation is bulkdens = 403 + 16.2 moiscont - 0.706 contsqd

Predictor	Coef	StDev	T	P
Constant	403.24	36.45	11.06	0.002
moiscont	16.164	5.451	2.97	0.059
contsqd	-0.7063	0.1852	-3.81	0.032
s = 10.15	R-Sq = 93.8	8% R-Sq	(adj) = 89	.6%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	4637.7	2318.9	22.51	0.016
Residual Error	3	309.1	103.0		
Total	5	4946.8			

Oha	moderant	had lada a	ni w		ev	
ODS	moiscont	Duikdens	FIL	rit	Residual	Resid
1	7.0	479.00	481.78	9.35	-2.78	-0.70
2	10.3	503.00	494.79	5.78	8.21	0.98
3	13.7	487.00	492.12	6.49	-5.12	-0.66
4	16.6	470.00	476.93	6.10	-6.93	-0.85
5.	19.8	458.00	446.39	5.69	11.61	1.38
6	22.0	412.00	416.99	8.75	-4.99	-0.97
	StDe	7				
Fit	Fit	95.0	% CI		95.0%	PI

- Fit Fit 95.0% CI 95.0% PI 491.10 6.52 (470.36, 511.83) (452.71, 529.48)
- (1) What proportion of observed variation in density can be explained by the quadratic model?
- (2) State the relevant hypotheses for the quadratic model.
- (3) Carry out a test of hypotheses at significance level 0.05 to decide if the quadratic model provides useful information according to the above output.
- (4) Does the quadratic predictor appear to provide useful information? State and test the appropriate hypotheses at significance level 0.05.