國立成功大學

114學年度碩士班招生考試試題

編 號: 79

系 所: 土木工程學系

科 目: 材料力學

日期:0210

節 次:第1節

注 意: 1.可使用計算機

2.請於答案卷(卡)作答,於 試題上作答,不予計分。

- 1. (25%) A compressive load *P* is transmitted through a rigid plate to three bars that have identical cross-section area *A* (see Fig. 1). The middle bar has Young's modulus *E*=50GPa, but the other bars have Young's modulus *E*=100GPa. Initially, the middle bar is slightly shorter than the other bars (see Figure). The dimensions are: *L*=1m, *s*=1.0mm, *A*=3000mm².
 - (a) Calculate the total strain energy U of the three bars when P=400kN.
 - (b) Calculate the total strain energy U of the three bars when P=750kN.

Fig. 2

- 2. (25%) The cylindrical pressure vessel is placed symmetrically on simple supports and is acted on by a uniform distributed load q=150kN/m (see Fig.2). The 6m long tank has an inner radius of r=1.2 m and a wall thickness of t=19mm. The span between two supports is 3.6m. The material is steel with a modulus of E=200GPa and the internal pressure p=720kPa. The effects of distributed load q and internal pressure p are considered. Element A is on the outer surface of the vessel, just to the right of the left –hand support. Element B is located on the bottom surface of the tank at the mid-span.
 - (a) Draw state of stress at element A, and find principal stresses and principal directions.
 - (b) Draw state of stress at element B, and find maximum shear stress.
- 3. (25%) A steel beam ABC is simply supported at A and held by a high-strength steel wire at B (see Fig.3). A load P=1 kN acts at the free end C. The wire has axial rigidity EA= 1400 N, and the beam has flexural rigidity EI=90 kNm². What is the deflection C of point C due to the load P?

Fig. 3

Fig.4

- 4. (25%) A cantilever beam with flexural rigidity EI, fixed at the left-hand end A and simply supported at the right-hand end B, is subjected to a temperature differential with temperature T_1 on its upper surface and T_2 on its lower surface (see Fig.4). Assume the coefficient of thermal expansion for the beam material is α , and the spring support is unaffected by temperature changes.
 - (a) Find all reactions for this beam.
 - (b) Determine the deflection curve.