國立成功大學 土研严 考試(

1. Bessel's equation is:

$$x^{2}y'' + xy' + (x^{2}-p^{2})y = 0$$
 (1)

- (a) Determine the nature of the singularities at x=0 and
- at x=1.

 (b) Determine the nature of the singularity at x= ∞ by transforming the independent variable to t=1/x.

 (c) Determine the indicial equation of equation (1) (Do
- l-dimensional Wave equation is

$$U_{tt} = U_{xx}$$
 $-\infty < x < \infty$, t>0.

Find $U(x,2\pi)$ and $U(2\pi,t)$ if

$$U(x,0) = \begin{cases} \sin x & |x| \le \pi \\ 0 & |x| > \pi \end{cases}$$

$$U_{\underline{t}}(x,0) = \begin{cases} 1 & |x| \le \pi \\ 0 & |x| > \pi \end{cases}$$

A simple beam is subjected to a distributed load q=ky, where k is a positive constant and y is the lateral deflection. Using the deflection formula Ely" = q, show that the critical value of the load parameter k (At critical value, the beam will buckle) is determined

$$Sin pl = 0$$

$$P = \sqrt[4]{\frac{K}{EI}}$$

- 4. (a) Solve completely: $(D-1)^2y = x^2e^x$ where D = d/dx.
 - (b) Find particular solution of $y'' + 2y' + 16y = \cos 2x$.
 - (c) Solve $y'' + \cos x y' + (1+\sin x)y = 0$ using the fact that cosx is a solution.
 - 5. Let $f = x^2 + y^2 + z^2$

$$u = xzi + yzk$$

Find (a) div(fu)

- (b) ∇'f
- (c) curl(grad f)
- (d) div(curl u)
- (e) grad(u·u)