Solve the following differential equations

a.

$$(1-x^2)y''-2xy'+12y=0, (15)$$

b.

$$y'' - y = -2\sin t + \delta(t - 1), \qquad y(0) = 0, \qquad y'(0) = 2,$$
 (15)

where $\delta(.)$ denotes the Dirac delta function.

Is the quadratic form x^T Ax always positive? why?
 Where

$$\mathbf{A} = \begin{pmatrix} 32 & -24 & -8\\ 16 & -11 & -4\\ 72 & -57 & -18 \end{pmatrix},\tag{15}$$

and $x^T = \{x_1, x_2, x_3\}$

 Prove that the eigenvectors of a symmetric matrix corresponding to different eigenvalues are orthogonal.

(15)

4. For a temperature distribution $T(x, y, z) = x^2z + yz^2$ in a cone represented by the position vector as

$$\vec{r} = u \cos v \vec{i} + u \sin v \vec{j} + 2u \vec{k}, \qquad (20)$$

find dT/dn at position P(1,0,2) in the outer normal direction \tilde{n} .

Solve the following partial differential equation.

$$abla^2 u(r,\theta) = 0, \{0 < r < 1, 0 < \theta < 2\pi\}$$
 $u(r,0) = u(r,2\pi) = 0$
 $u(1,\theta) = \cos(2\theta)$

(20)