89 學年度 國立成功大學 土木五年至 系 五柱教學(甲) 試題 共 二 頁 第 一 頁

1. Solve the following differential equations

a)
$$(1+x)^2 y'' - 2y = 0$$
 (12%)

b)
$$y' + y = f(x)$$

where f(x)=1 when $0 \le x \le 1$ and

$$f(x)=0$$
 when $x>1$

and
$$y(0)=0$$
.

(12%)

2. Evaluate the following integrals

a)
$$\int_{|z|=1}^{\infty} \frac{z}{z} dz \quad (10\%)$$

b)
$$\int_{|z|=1}^{\infty} \frac{dz}{\sqrt{6z^2 - 5z + 1}}$$
 (10%)

where the square root is the positive $\sqrt{2}$ at z = 1.

3.

a) Identify and characterize the singularities of

(i)
$$f(z) = z / \sin z$$
 (4%)

(ii)
$$f(z) = \sin z / z$$
 (4%)

b) Locate and classify the singular points of the following differential equations

(i)
$$(x-1)y'' + \sqrt{x}y = 0$$
 $(x \ge 0)$ (4%)

(ii)
$$xy'' + y \sin x = 0$$
 (4%)

Solve the Laplace equation

$$\nabla^2 \mathbf{u} = \mathbf{0}$$

in the annular region defined by $a \le |z| \le b$ with u=1 at r=b

and
$$\frac{\partial u}{\partial r} = 0$$
 at $r = a$. (15%)

89 學年度 國立成功大學 土木区4室 系 三起數學(甲) 試題 共 二 頁 第 二 頁

5. Laguerre's equation is

$$xy'' + (1-x)y' + ny = 0$$

with solutions defined as $y(x,n) = L_n(x)$.

a) Show that solutions $L_k(x)$, $L_j(x)$, j,k integers, are orthogonal with respect to the weighting function e^{-x} over the interval $[0,\infty)$, i.e.,

$$\int_{0}^{\infty} e^{-x} L_{k}(x) L_{j}(x) dx = 0 \quad \text{if } j \neq k. \quad (10\%)$$

- b) What boundary conditions must the $L_n(x)$ satisfy in the deriving above results? (5%)
- 6. Use Stokes's theorem to determine the value of the integral

$$\oint [(1+y)z \, dx + (1+z)x \, dy + (1+x)y \, dz]$$

where c is a closed curve in the plane x-2y+z=1. (10%)