90 學年度 國立成功大學 土木之程 系 五程數學(丁組) 試題 共 1 頁 所 五程數學(丁組) 試題 第 1 頁

1. Consider the Sturm-Liouville problem

$$x^4 \frac{d^2 y}{dx^2} + 2 x^3 \frac{dy}{dx} = \lambda y$$

y(1)=0, y(2)=0.

Find the eigenvalues and eigenfuctions.(Hint: s = 1/x)(15%)

2. Use the transformation $z = \sin(x)$ to solve

$$\frac{d^2y}{dx^2} + (\tan x)\frac{dy}{dx} + (\cos^2 x)y = 0 \quad (10\%)$$

3. If F(s) and G(s) are the Laplace transform of f(t) and g(t), respectively. Express g(t) as an integral when

$$G(s)=F(s)/(s+a)^2 (15\%)$$

4. Obtain a power series particular solution valid near x=0 for

$$x^2 \frac{d^2y}{dx^2} + y = e^x / \sqrt{x}$$
 (15%)

5. Find the general solution of the equation

$$\frac{d\mathbf{y}}{dt} = \begin{pmatrix} 7 & 4 & 4 \\ -6 & -4 & -7 \\ -2 & -1 & 2 \end{pmatrix} \mathbf{y}.$$

where $y=(y_1, y_2, y_3)^T.(15\%)$

6. Evaluate using residues the integral

$$\int_0^\infty \frac{dx}{1+x^3} \qquad (15\%)$$

7. Show that the nonlinear (or quasi-linear) system of differential equations

for u(x, y) and v(x, y)

$$u^{n} \frac{\partial u}{\partial x} + v^{n} \frac{\partial v}{\partial y} = 0$$

$$\frac{\partial \mathbf{u}}{\partial \mathbf{v}} - \frac{\partial \mathbf{v}}{\partial \mathbf{x}} = 0$$

with $n \ge 0$ can be transformed into a linear system (with variable coefficients)

if x and y are considered functions of u and v. Derive the differential equations

for x(u, v) and y(u, v). (15%)