

1. (20%) Define R is a rotation matrix with a 90 degree clockwise given as

$$\mathbf{R} = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right].$$

Suppose that $\phi(x, y)$ is a scalar function and $\mathbf{q}(x, y)$ is a divergence-free vector (2×1) field, show that (i) $\mathbf{R}\nabla\phi$ is divergence-free, i.e., $\nabla\cdot\mathbf{R}\nabla\phi=0$ (ii) $\mathbf{R}\mathbf{q}$ is curl-free, i.e. $\nabla\times\mathbf{R}\mathbf{q}=0$.

2. (20%) Let $f_1(\theta)$ and $f_2(\theta)$ denote the normal derivatives of the harmonic function $u(r,\theta)$ on the boundaries $|z|=r_1$ and $|z|=r_2$ of the annulus $r_1 \leq |z| \leq r_2$. Show that (i) $f_1(\theta)$ and $f_2(\theta)$ must satisfy the condition

$$r_1 \int_{-\pi}^{\pi} f_1(\theta) d\theta + r_2 \int_{-\pi}^{\pi} f_2(\theta) d\theta = 0.$$

(ii) find the field solution $u(r, \theta)$.

3. (10%) Given four complex numbers a_3, a_1, a_{-1} and a_{-3} in which $|a_3| = |a_1| = |a_{-1}| = |a_{-3}| = 1$. Suppose now that $a_3\bar{a}_1\bar{a}_{-1}a_{-3} \in \text{Re}$ (real number), $a_3\bar{a}_1\bar{a}_1a_{-1} \in \text{Re}$, and $a_1\bar{a}_{-1}\bar{a}_{-1}a_{-3} \in \text{Re}$, where the over bar denotes the complex conjugation. Find all possible solutions of a_3, a_1, a_{-1} and a_{-3} that satisfy the conditions. (Hint: define $\xi_k = \arg a_k$)

4. (10%) Show that if u(z) is harmonic in $|z - z_0| < R$, then

$$u(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} u(z_0 + re^{i\theta}) d\theta, \quad 0 < r < R.$$

5 (20%) Solve the system of differential equations

$$\begin{cases} 2x' - y' + x + y = t \\ x' + y' + 4x = 3. \end{cases}$$

6 (20%) Let

$$\mathbf{A} = \begin{bmatrix} 4 & \sqrt{6} \\ \sqrt{6} & 3 \end{bmatrix},$$

and $B = A^5 - 3A^4 - 2I$.

(i) Determine the eigenvalues and corresponding eigenvectors of B.

(ii) Determine whether B is positive definite.