(15)

(20)

(15)

1. Solve the following differential equation $ydx + (x - \ln y)dy = 0$ The following differential equation

for $y_i(x) \neq y_j(x)$ that $\int_{-\infty}^{\infty} y_i(x)y_j(x)dx = 0$? Why?

 $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + \lambda y = 0$

path C. That is, the integral

the point $(\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}, \frac{1}{\sqrt{3}})$. (15)

exists on the interval $-1 \le x \le 1$ and λ is a real eigenvalue. Is it always true

Find the position vector \vec{r} of a plane tangent to a surface $x^2 + y^2 + 4z^2 = 4$ at

Prove that the work done by a gravitational force $\vec{F}(\vec{r})$ is independent of the

 $W = \int \vec{F}(\vec{r}) \bullet d\vec{r}$

depends only on end points $P_1(x_1,y_1,z_1)$ and $P_2(x_2,y_2,z_2)$. Where $\vec{F}(\vec{r}) = -\nabla \phi(\vec{r})$, $\phi(\vec{r})$ is a scalar function, $ar{r}$ is the position vector, and abla is the nabla.

 $\frac{d^2u_1(t)}{dt^2} + \frac{du_1(t)}{dt} + u_1(t) = \delta(t) \text{ with initial conditions } \frac{du_1(0)}{dt} = 0 \text{ and } u_1(0) = 0.$

Let $u_1(t)$ be a solution of the following equation

where a and b are constants and $\delta(t)$ is the Dirac delta function.

Assume $u_2(t)$ be a solution of the following equation

Prove that $u_2(t) = \int_0^t f(\tau)u_1(t+\tau)d\tau$ (15)

 $\frac{d^2u_2(t)}{dt^2} + \frac{du_2(t)}{dt} + u_2(t) = f(t) \text{ with the same conditions } \frac{du_2(0)}{dt} = 0 \text{ and } u_2(0) = 0.$

6. Solve the following wave equaton

$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 y}{\partial t^2}, \quad (0 < x, 0 < t)$$

(20)

with the following conditions

$$y(x,0)=0.$$

$$\frac{\partial y(x,0)}{\partial t} = e^{-2x} , \qquad (0 < x)$$

$$y(0,t) = \sin(3t) , \quad (0 < t)$$