93學年度國立成功大學 土木工程學系 丁組 工程數學

共 / 頁 試題 第 / 頁

1. Find the amplitude of resonance for the vibration of a particle governed by

$$m\frac{d^2y}{dt^2} + c\frac{dy}{dt} + ky = P\cos\Omega t$$

where
$$m$$
, c , k , P and Ω are all constants.

(20)

2. Solve the following differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = f(x), \quad y(0) = \frac{dy(0)}{dx} = 0, \text{ where}$$

$$f(x) = 5x, \text{ if } 0 < x < 2 \text{ and } f(x) = 10, \text{ if } 2 < x,$$
(20)

3. Prove that

(b) The eigenvalues of similar matrices are the same.

(10)

Calculate the following surface integral

$$I_{s} = \int_{S} \vec{F} \bullet \vec{n} dS \,,$$

where the vector field $\vec{F} = 2z\vec{i} + (x - y - z)\vec{k}$,

$$\vec{n}$$
 denotes the unit outer normal vector of the surface S: $z = x^2 + y^2$; $x^2 + y^2 \le 6$, (15)

5. For a wave equation

$$\frac{\partial^2 \phi}{\partial t^2} = \frac{\partial^2 \phi}{\partial x^2} \,, \quad 0 \le t \,, \quad 0 \le x$$

(b) Solve
$$\phi(x,t)$$
 if $\phi(x,0) = \frac{d\phi(x,0)}{dt} = 0$ and $\phi(0,t) = [u(t) - u(t-2)](-t^2 + 2t)$

where
$$u(.)$$
 denotes the unit step function. (15)

(10)