編號: 4 173 系所:土木工程學系甲組

科目:工程數學

1. (i) (10%)

(A)
$$\mathbf{F} = -\nabla \varphi$$
, (B) $\oint \mathbf{F} \cdot d\mathbf{r} = 0$, (C) $\nabla \times \mathbf{F} = 0$.

In the following choices which one (a,b,c,d,e,f) is correct? Explain why.

(a)
$$(A) \Leftrightarrow (B) \Leftrightarrow (C)$$
,

(b)
$$(A) \Leftrightarrow (B) \Leftrightarrow (C)$$
,

(c)
$$(A) \Leftrightarrow (C) \Leftrightarrow (B)$$
,

(d)
$$(A) \Leftrightarrow (B) \Leftrightarrow (C),$$

(e)
$$(A) \Leftrightarrow (B) \Leftrightarrow (C)$$
.

(ii) (10%) Evaluate the integral

$$\oint\limits_C (y-\sin x)\,dx+\cos x\,\,dy,$$

where C is the triangle from $(0,0) \to (\pi/2,0) \to (\pi/2,1) \to (0,0)$.

2. (i) (10%)Given two $n \times n$ matrices **A** and **B**, suppose that there exists an invertible $n \times n$ matrix **C** such that

$$\mathbf{B} = \mathbf{C}^{-1} \mathbf{A} \mathbf{C}.$$

Show that A and B have the same eigenvelues.

(ii) (10%) Given the quadrative form

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = d,$$

in which **A** is an $n \times n$ symmetric matrix, **x** is an $n \times 1$ matrix and d is a scalar. What are the conditions for the matrix **A** so that the value d is always positive for any given **x**?

編號: 173 系所:土木工程學系甲組

科目:工程數學

3. (i) (10%) Find the solution of

$$\int_{0}^{2\pi} \frac{dx}{1 - 2p\cos x + p^2}, \quad 0$$

(ii) (10%) Find the image of the circle |z|=2 after the mapping

$$w=z+\frac{1}{z},$$

where z = x + iy and w = u + iv.

4. (i) (10%) Setting

$$\varphi(x.y) = e^{-(ax+by)}U(x.y),$$

transform the partial differential equation

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + 2a \frac{\partial \varphi}{\partial x} + 2b \frac{\partial \varphi}{\partial y} = 0$$

into a differential equation with unknown U(x.y).

(ii) (10%) Find the general solution of z(x, y)

$$\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0.$$

5. (i) (15%) Solve the differential equation by the method of Laplace transform

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 2y = t, \quad y(0) = \frac{dy(0)}{dt} = 1.$$

(ii) (5%) What are Legendre polynomials?