編號: 120 國立成功大學九十八學年度碩士班招生考試試題 共 **>** 頁,第/頁

系所組別: 十木工程學系戊組

考試科目: 工程經濟 考試日期:0307・節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

*All cash flows diagrams should be clearly illustrated.

1. Please answer the following questions:

- 1.1. Can we compare alternatives by maximizing IRRs (internal Rate of Return) only? Why? (5%)
- 1.2. What are the loss and gain on the disposal of the asset in terms of tax, respectively? (5%)
- 2. How much can be paid for \$5,000, 10% bond, with interest paid semiannually, if the bond matures 12 years hence? Assume that the purchaser will be satisfied with 6% nominal interest compounded semiannually. (10%)
- 3. You bought a new car which was on a 4 year mortgage of NT\$500,000 from the Interstate bank. The Interstate bank asked you to pay back the loan by monthly payments on 12 % nominal interest rate. You have made payments one year.
 - 3.1. What is the monthly payment that you are asked to make? (5%)
 - 3.2. What is the remaining principal? (10%)
 - 3.3. A new bank offers you a 3 year deal of refinancing your car with 6% nominal interest rate, compounding monthly. However, a set up change would cost you NT\$10,000. Will you move your mortgage to the new bank? How long should you stay with the Interstate bank, if your MARR is 0.75% per month? (15%)
- 4. The board of a residential community wishes to establish a fund at the end of 2005 that by the end of year 2022 will grow to an amount large enough to place new elevators for its own 3 buildings. Each building has two elevators operated. A new elevator is estimated to cost NT \$2M in 2020. In 2020, two new elevators will be installed in one of the three buildings. Another building will have new elevators in 2021 at the cost of NT\$2.1M each elevator. The last building will be re-elevatored in 2022 at cost of NT\$2.2M each. The annual effective interest rate that can be earned on this fund is 3%. How much money each year should be saved starting at the end of 2006 to pay all new elevators? (15%)
- 5. A contractor is considering the purchase of a set of machine tools at a cost of \$30,000. The purchase is expected to generate profits of \$14,500 (revenues less expenses) per year in each of the next 4 years. Additional profits will be taxed at a rate of 40%. The asset is depreciated by Straight-Line method with zero salvage value. The contractor's real after-tax MARR is 20% 5.1. What is the PW of this investment? Should the contractor purchase the machine tools?
 - 5.1. What is the PW of this investment? Should the contractor purchase the machine tools? (10%)
 - 5.2. What is the PW of this investment if the general inflation is 5% during each of the nest 4 years? Should the contractor purchase the machine tools? (10%)
- 6. ABC營造公司擁有一重型牽引機,其現有市場價值為\$80,000,而根據二手市場資訊,預測此一資產未來三年的市場價值分別為\$76,000、\$60,000、\$40,000,現今每年的花費是\$18,000而且預計將每年增加4.1%。假設MARR是10%,現有最佳的取代方案之經濟年限(Economic Life)為6年,而此取代方案最小的等值平均年成本(EUAC)為\$44,210。根據上述資訊,你應於何時置換此一資產(15%)

(北大四十四日主姚编从位)

編號: 120

國立成功大學九十八學年度碩士班招生考試試題 共 2. 頁,第2頁

系所組別: 土木工程學系戊組

考試科目: 工程經濟

考試日期:0307,節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

To Find:	Given:	Factor by Which to Multiply "Given"	Factor Name	Factor Functional
For single cash flows:				
F	Р	(1+ i) ^N	Single payment compound amount	(F/P, i%, N)
P	F	$\frac{1}{(1+i)^N}$	Single payment present worth	(P/F, i%, N)
For uniform series(annuities):				
F	Α	$\frac{(1+i)^{N}-1}{i}$	Uniform series compound amount	(F/A, I%, N)
Р	A	$\frac{(1+i)^{N}-1}{i(1+i)^{N}}$	Uniform series present worth	(P/A, i%, N)
Α	F	$\frac{i}{(1+i)^{\mathcal{V}}-1}$	Sinking fund	(A/F, 1%, N)
A	Р	$\frac{i(1+i)^{N}}{(1+i)^{N}-1}$	Capital recovery	(A/P, i%, N)