
系所組別: 十木工程學系戊組

考試科目: 丁程經濟

考駄日期:0307・新次:2

※ 考生請注意:本試題 ▽□ □不可 使用計算機

- Please answer the following questions:
 - Can we compare alternatives by maximizing Net Present Value only? Why?(5%) What are the differences between cost accounting and cost engineering? (5%)
- 2. Consider the end-of-year geometric sequence of cash flow in Fig. 1 and determine the PW and AW equivalent values. The rate of decrease is 20% per year after the first year, and the interest rate is 24% compounded monthly. (15%)

- 3 A contractor is considering a bank loan for purchasing a new crane costing \$150,000. The loan would he at a rate of 8% for 3 years (15%)
 - What is the semiannual repayment amount of principal and interest?
 - What is the total interest paid over the 3 years?
 - 3.3 What is the balance owed by the contractor if, after 2 years of payments, they pay off the remainder of the loan?
- You purchased a building five years ago for \$100,000. Its annual maintenance expense has been \$5,000 per year. At the end of three years, you spent \$9,000 on roof repairs. At the end of five years (now), you sell the building for \$120,000. During the period of ownership, you rented out the building for \$10,000 per year paid at the beginning of each year. Use the AW method to evaluate this investment when your MARR is 8% per year, (20%)
- Suppose that the new equipment has a cost basis of \$12,000 and a salvage value of \$3,000 at the end of 6 years. This asset is depreciated by the Straight-Line method. The effective income tax rate is 40 % and the after-tax MARR ic = 10%. If the company is going to sell this asset after 3 years at the market value of \$6,000, what is the minimum profit per year this asset should produce to breakeven the investment? (20%)
- The capital investment for a new highway paving machine is \$900,000. The current estimated annual expense is \$100,000. This expense is estimated to increase at the rate of 6% per year. Assume that f (inflation rate) = 5%, N = 7 years, MV at the end of year seven is 15% of the capital investment, and the MARR (inflation-free) is 10% per year. What uniform annual revenue would the machine need to generate to break even? (20%) (背面仍有题目.請繼續作祭)

細糖: 111

國立成功大學九十九學年度碩士班招生考試試顯

共 2. 頁 第2頁

系所組別: 土木工程學系戊組

考試科目 : 工程經濟

考試日期:0307:節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

To Find:	Given:	Factor by Which to	Factor Name	Factor Functional
		Multiply "Given"		Symbol
or single cash	flows:			
F	P	(1+ i) ^N	Single payment	(F/P, i%, N)
			compound amount	
P	F		Single payment	(P/F, i%, N)
			present worth	
or uniform sen	ies(annuities):			
F	A	$\frac{(1+i)^N-1}{i}$	Uniform series	(F/A, i%, N)
		i	compound amount	
P	Α	$(1+i)^{v}-1$	Uniform series present worth	(P/A, i%, N)
		$\frac{(1+i)^{N}-1}{i(1+i)^{N}}$		
A	F	$\frac{i}{(1+i)^{N}-1}$	Sinking fund	(A/F, i%, N)
		$(1+i)^{N}-1$		
Α	P	$\frac{i(1+i)^{w}}{(1+i)^{w}-1}$	Capital recovery	(A/P, i%, N)
		$\overline{(1+i)^{W}-1}$		

$$F = \frac{G}{i}(F/A, i\%, N) - \frac{NG}{i}$$

$$P = \frac{A_1}{1+f}(P/A, i_{CR}\%, N)$$

$$P = \frac{A_1}{1+f} (P/A, i_{CR}\%, N)$$

$$i_{CR} = (1+i)/(1+f)-1$$