编號:	131	國立成功大學一〇一學年度碩士班招生考試試題	共 3 頁·第 1 頁	
系所組別	: 工程科學系甲	、戊、己組		
考試科目	: 電子電路		考試日期:0225, 箭次:1	

- 考試日期:0225,節次:1
- 1. A commercial μ A741 is employed in the noninverting configuration, $R_1 = 1 k\Omega$ and $R_2 = 9 k\Omega$.

The op amp has its open-loop gain (or transfer function) as $A(s) = \frac{10^4}{1 + \frac{s}{2\pi \times 100}}$. (a) Find the

closed-loop gain, $G(s) \equiv v_0 / v_1$. (8 \Re) (b) Plot the magnitude and phase responses of G(s). (8 \Re) (c) If the input signal is $0.1\sin(2\pi \times 100 \times 10^3 t)$, that is, frequency=100 kHz and amplitude=0.1 V, obtain the output signal. (Note that $1/\sqrt{2} = 0.707$) (4 \Re)

The circuit is intended to supply a voltage to floating loads while making greatest possible use of the 2. available power supply. (a) What is the voltage gain v_0 / v_1 ? (6 \Re) (b) Assuming that the op amps operate from ± 15 -V power supplies and that their output saturates at ± 14 -V, what is the largest sine wave output that can be accommodated? Specify both its peak-to-peak and rms values. (Note that

$$1/\sqrt{2} = 0.707$$
)(6 分)

编號:	131	國立成功大學一〇一學年度碩士班招生考試試題	共 3 頁·第2頁
系所組別	:]	L程科學系甲、戊、己組	
考試科目	: 6	電子電路	考試日期:0225,節次:1

3. As shown in the figure, a load resistance R is connected across the diode (D1N4148) in a clamping circuit, where C=1nF and R=100K Ω .

The input is a square wave between -5V and +5V, as shown below.

If D1N4148 is modeled by the constant-voltage drop of 0.7V, plot the output waveform. (10 \Re)

4. For the following circuit, assume that $V_{BE} = 0.7 \text{ V}$. (a) For $v_{B1} = -v_{id}/2$ and $v_{B2} = v_{id}/2$, find the differential gain. (8 \Re) (b) For $v_{B1} = v_{B2} = v_{icm}$, find the common-mode gain. (8 \Re) (c) If $v_{B1} = 0.1 \sin 2\pi \times 60t - 0.005 \sin 2\pi \times 1000t$ volt and $v_{B2} = 0.1 \sin 2\pi \times 60t + 0.005 \sin 2\pi \times 1000t$ volt, find v_{o} . (4 \Re)

國立成功大學一〇一學年度碩士功	日招生考试试题	
-----------------	---------	--

系所組別: 工程科學系甲、戊、己組 考試科目: 電子電路

131

编號:

5. For the circuit below, assume $\alpha \cong 1$, $V_{BE}=0.4$ V and 0.7 V at the edge of conduction and fully conduction, respectively. (a) What are the values of V_E and V_C for $V_B=0$ V? (6 \Re) (b) What's the maximum value of V_B for the cutoff of transistor? $V_C=?$ $V_E=?$ (6 \Re) (c) For what value of V_B does the transistor saturate? $V_C=?$ $V_E=?$ (Note that in saturation, $V_{CEsal}=0.2$ V) (6 \Re)

6. A bipolar op-amp circuit with capacitor $C_c = 10 \text{ pF}$ placed in the negative feedback path of Q_5 . All transistors have $\beta = 100$, $|V_{BE}| = 0.7 \text{ V}$, and $r_o = \infty$. (a) The DC voltages of inputs and output are assumed to be 0 V. Find the emitter currents of all transistors. $(4 \ 2\pi)$ (b) Find the gain of the amplifier with $R_L = 10 \text{ k}\Omega$. $(10 \ 2\pi)$ (c) Based on the Miller's theorem , by using the gain of Q_5 , C_C can be separated into two capacitors. After doing so, use open-circuit time constant to obtain ω_H . $(6 \ 2\pi)$

共3頁,第3頁