1．A commercial $\mu \mathrm{A} 741$ is employed in the noninverting configuration，$R_{\mathrm{t}}=1 \mathrm{k} \Omega$ and $R_{2}=9 \mathrm{k} \Omega$ ． The op amp has its open－loop gain（or transfer function）as $A(s)=\frac{10^{4}}{1+\frac{s}{2 \pi \times 100}}$ ．（a）Find the closed－loop gain，$G(s) \equiv v_{o} / v_{i}$. （8 分）（b）Plot the magnitude and phase responses of $G(s)$. （8 分）（c） If the input signal is $0.1 \sin \left(2 \pi \times 100 \times 10^{3} t\right)$ ，that is，frequency $=100 \mathrm{kHz}$ and amplitude $=0.1 \mathrm{~V}$ ， obtain the output signal．（Note that $1 / \sqrt{2}=0.707$ ）（4 分）

2．The circuit is intended to supply a voltage to floating loads while making greatest possible use of the available power supply．（a）What is the voltage gain v_{0} / v_{l} ？（6 分）（b）Assuming that the op amps operate from $\pm 15-\mathrm{V}$ power supplies and that their output saturates at $\pm 14-\mathrm{V}$ ，what is the largest sine wave output that can be accommodated？Specify both its peak－to－peak and rms values．（Note that $1 / \sqrt{2}=0.707$ ）（6 分）

（背面仍有題目，綪繼缜作答）

3．As shown in the figure，a load resistance R is connected across the diode（D1N4148）in a clamping circuit，where $C=1 \mathrm{nF}$ and $R=100 \mathrm{~K} \Omega$ ．

The input is a square wave between -5 V and +5 V ，as shown below．

If D1N4148 is modeled by the constant－voltage drop of 0.7 V ，plot the output waveform．（10 分）
4．For the following circuit，assume that $V_{B E}=0.7 \mathrm{~V}$ ．（a）For $v_{B 1}=-v_{l d} / 2$ and $v_{B 2}=v_{i d} / 2$ ，find the differential gain．（8 分）（b）For $v_{B 1}=v_{B 2}=v_{i c m}$ ，find the common－mode gain．（8 分）（c）If $v_{B 1}=0.1 \sin 2 \pi \times 60 t-0.005 \sin 2 \pi \times 1000 t$ volt and $v_{B 2}=0.1 \sin 2 \pi \times 60 t+0.005 \sin 2 \pi \times 1000 t$ volt， find v_{0} ．（4 分）

5．For the circuit below，assume $\alpha \cong 1, V_{B E}=0.4 \mathrm{~V}$ and 0.7 V at the edge of conduction and fully conduction，respectively．（a）What are the values of V_{E} and V_{C} for $V_{B}=0 \mathrm{~V}$ ？（6 分）（b）What＇s the maximum value of V_{B} for the cutoff of transistor？$V_{C}=$ ？$V_{E}=$ ？（ 6 分）（c）For what value of V_{B} does the transistor saturate？$V_{C}=$ ？$V_{E}=$ ？（Note that in saturation，$V_{C E s a l}=0.2 \mathrm{~V}$ ）（ 6 分）

6．A bipolar op－amp circuit with capacitor $C_{C}=10 \mathrm{pF}$ placed in the negative feedback path of Q_{5} ．All transistors have $\beta=100,\left|V_{B E}\right|=0.7 \mathrm{~V}$ ，and $r_{o}=\infty$ ．（a）The DC voltages of inputs and output are assumed to be 0 V ．Find the emitter currents of all transistors．（4 分）（b）Find the gain of the amplifier with $R_{L}=10 \mathrm{k} \Omega$ ．（10 分）（c）Based on the Miller＇s theorem，by using the gain of Q_{5}, C_{C} can be separated into two capacitors．After doing so，use open－circuit time constant to obtain ω_{H} ．（6 分）

