國立成功大學 102 學年度碩士班招生考試試題

系所組別:工程科學系乙組

考試科目:計算機數學

編號: 118

※ 考生請注意:本試題不可使用計算機

1. Let **R** be a relation on a set **X**. Define

 $R^{-1} = \{(y, x) \mid (x, y) \in R\},\$

 $\rho(\mathbf{R}) = \mathbf{R} \ \cup \{(\mathbf{x}, \mathbf{x}) \mid \mathbf{x} \in \mathbf{X}\}$

 $\sigma(R) = R \cup R^{-1}$

(1) (5%)For the relation $R_1 = \{(1,1), (1,2), (3,4), (4,2)\}$. Find $\rho(R_1)$ and $\sigma(R_1)$.

(2) (5%)Show that $\rho(R)$ is reflexive.

(3) (5%)Show that $\sigma(R)$ is symmetric.

(4) (5%)How can we quickly determine whether a relation R is a function by examining the matrix of R?

2. (1) (10%) Use the formulas

 $s_1 = 2$, $s_n = s_{n-1} + 2n$ for all $n \ge 2$, to write an algorithm that computes s_n

(2) (10%)Give a proof that your algorithm is correct.

(3) (10%)Solve the recurrence relation defined by s_n .

3. (20%) Represent the postfix expression A B + C D * E F / - - A * as (1)a binary tree and (2)write the prefix form, (3)the usual infix form and (4)the fully parenthesized infix form of the expression, and (5)find the value of the postfix expression if A=1, B=2, C=3, D=4, E=6, F=3.

(背面仍有題目,請繼續作答)

共 2頁,第1頁

考試日期:0223、節次:3

國立成功大學 102 學年度碩士班招生考試試題

考試科目:計算機數學

系所組別:工程科學系乙組

編號: 118

※ 考生請注意:本試題不可使用計算機

4. Refer to the following adjacency matrix of a weighted graph. Suppose that the vertices represent offices. An edge connects two offices if there is a communication link between the two. Notice that any office can communicate with any other either directly through a communication link or by having others relay the message.

	А	В	С	D	Е	F	G	Н	·I
А	0	337	1846	1464	2704	∞	00	8	∞
В	337	0	∞	1235	~	∞	00	∞	2342
C	1846	∞	0	802	867	849	740	621	œ
D	1464	1235	802	0	00	∞	1391	∞	1121
Е	2704	∞	867	∞	0	∞	187	∞	1258
F	∞	∞	849	∞		0	144	∞	∞
G	∞	∞	740	1391	187	144	0	184	1090
Η	∞	∞	621	∞	∞	∞	184	0	946
I	∞	2342	∞	1121	1258	∞	1090	946	0

(1) (10%)Use Djijkstra's shortest path algorithm to find the shortest path from vertex H to vertex A.

(2) (10%)Find a minimum spanning tree for the graph. You can either use Prim's algorithm or Kruskal's algorithm. But you must specify which algorithm you use.

(3) (5%)What is the maximum number of communication links that can be broken with communication among all offices still possible?

(4)(5%)Show a configuration in which the maximum number of communication links are broken with communication among all offices still possible.