考生請注意：本試題不可使用計算機

1．Let R be a relation on a set \boldsymbol{X} ．Define

$$
R^{-1}=\{(y, x) \mid(x, y) \in R\},
$$

$$
\rho(R)=R \quad \cup\{(x, x) \mid x \in X\}
$$

$$
\sigma(R)=R \cup R^{-1}
$$

（1）（5\％）For the relation $R_{1}=\{(1,1),(1,2),(3,4),(4,2)\}$ ．Find $\rho\left(R_{1}\right)$ and $\sigma\left(R_{1}\right)$ ．
（2）(5%) Show that $\rho(R)$ is reflexive．
（3）（5\％）Show that $\sigma(R)$ is symmetric．
（4）（5\％）How can we quickly determine whether a relation R is a function by examining the matrix of R ？

2．（1）(10%) Use the formulas
$s_{1}=2, s_{n}=s_{n-1}+2 n \quad$ for all $n \geq 2$ ，to write an algorithm that computes s_{n}
（2）（ 10% ）Give a proof that your algorithm is correct．
（3）（10\％）Solve the recurrence relation defined by s_{n} ．

3．（20\％）Represent the postfix expression $A B+C D^{*} E F /-A^{*}$ as（1）a binary tree and（2）write the prefix form，（3）the usual infix form and（4）the fully parenthesized infix form of the expression，and（5）find the value of the postfix expression if $A=1, B=2, C=3, D=4, E=6, F=3$ ．
※ 考生請注意：本試題不可使用計算機

4．Refer to the following adjacency matrix of a weighted graph．Suppose that the vertices represent offices．An edge connects two offices if there is a communication link between the two．Notice that any office can communicate with any other either directly through a communication link or by having others relay the message．

	A	B	C	D	E	F	G	H	I
A	0	337	1846	1464	2704	∞	∞	∞	∞
B	337	0	∞	1235	∞	∞	∞	∞	2342
C	1846	∞	0	802	867	849	740	621	∞
D	1464	1235	802	0	∞	∞	1391	∞	1121
E	2704	∞	867	∞	0	∞	187	∞	1258
F	∞	∞	849	∞	∞	0	144	∞	∞
G	∞	∞	740	1391	187	144	0	184	1090
H	∞	∞	621	∞	∞	∞	184	0	946
I	∞	2342	∞	1121	1258	∞	1090	946	0

（1）（10\％）Use Djijkstra＇s shortest path algorithm to find the shortest path from vertex H to vertex A ．
（2）（10\％）Find a minimum spanning tree for the graph．You can either use Prim＇s algorithm or Kruskal＇s algorithm．But you must specify which algorithm you use．
（3）(5%) What is the maximum number of communication links that can be broken with communication among all offices still possible？
（4）（5\％）Show a configuration in which the maximum number of communication links are broken with communication among all offices still possible．

