注意：本試卷共 10 題，每題只有一個答案。批改人員將只核對每題的最後答案，計算或誘導過程只作為確認答案來源（以防作弊情形）但不予記分。請考生將每題的最後答案（若有單位請包含單位）以方框標註出來，以利批改作業。重力加速度可以用 g 表示，或以 $10 \mathrm{~m} / \mathrm{s}^{2}$計算•

1．（10\％）A regular tetrahedron has six edges of length a ．A force P is directed along edge $B C$ as shown．
Determine the magnitude of the moment of \mathbf{P} about edge $O A$ ．

2．（10\％）A slender rod of length L and weight W is attached to collars that can slide freely along the guides shown．Knowing that the rod is in equilibrium，derive a relation between the angle θ and the angle β ．

3．（ 10% ）Determine the magnitude of the force in the member $D E$ ．

系所組別：工程科學系丙，戊，已組
考試科目：工程力藇
※ 考生請注意：本試題不可使用計算機

4．（ 10% ）For the beam and loading shown，determine the magnitude of the maximum bending moment in the beam．

5．（ 10% ）Determine the magnitude of the vertical force \mathbf{P} that must be applied at C to maintain the equilibrium of the linkage．

6．（ 10% ）The two blocks shown are originally at rest．Neglecting the masses of the pulleys and the effect of friction in the pulleys and between block A and the horizontal surface，determine the magnitude of the acceleration of block B when the system is released．

系所組別：工程科學系丙，戊，已組

※ 考生請注意：本試題不可使用計算機

7．（ 10% ）Block A and B have masses of 11 kg and 5 kg ，respectively，and they are both at a height $h=2 \mathrm{~m}$ above the ground when the system is released from rest．Just before hitting the ground， block A is moving at a speed of $3 \mathrm{~m} / \mathrm{s}$ ．Determine the amount of energy dissipated in friction by the pulley．

8．（ 10% ）Knowing that the coefficient of static friction between the tires and the road is 0.80 for the automobile shown． Assuming four－wheel drive，determine the magnitude of the maximum possible acceleration on a level road．

9．（ 10% ）A uniform long slender rod $A B$ of mass m is at rest on a frictionless horizontal surface when hook C engages a small pin at A ．Knowing that the hook is pulled upward with a constant velocity v_{0} ，determine the magnitude of the impulse exerted on the rod at A ．Assume that the velocity of the hook is unchanged and that the impact is perfectly plastic．

10．（10\％）Determine the natural period of small oscillations for the device shown．

