

國立成功大學 102 學年度碩士班招生考試試題

系所組別:工程科學系甲、戊、己組

編號: 128

考試日期:0223,節次:1

※ 考生請注意:本試題可使用計算機

3. A commercial μ A741 is employed in the noninverting configuration, $R_1 = 1 k\Omega$, $R_2 = 9 k\Omega$, and $C_2 = 100 \text{ nF}$. The op amp has its open-loop gain (or transfer function) as A(s).

(a) If the op amp is ideal and has an infinite open-loop gain, $A(s) = \infty$, find the closed-loop gain, G(s). (5 \Re)

(b) If the op amp is ideal except that its open-loop gain is finite, $A(s) = \frac{10^4}{1 + \frac{s}{2\pi \times 100}}$, find the closed-loop gain,

G(s).(5 分)

4. This is a limiter circuit. All diodes in forward region can be represented by a constant-voltage drop of 0.7V. The specified zener voltage 8.2 V is measured in breakdown region with a current of 10 mA and that $r_z = 100 \Omega$, represent the zener by a piecewise-linear model. Sketch and clearly label the transfer characteristic for $-20 \text{ V} \le v_I \le 20 \text{ V}$ by considering three cases (a) $I_{ZK} = 0 \text{ mA}$ (5 分) (b) $I_{ZK} = 20 \text{ mA}$ (5 分) (c) $I_{ZK} = 400 \text{ mA}$. (5 分)

⁽c) Plot the magnitude plot of G(s) in (a). (5 分)

考試科目:電子電路

考試日期:0223,節次:1

※ 考生請注意:本試題可使用計算機

5. Design the circuit to obtain a dc voltage of +0.2V at each of the drains of Q_1 and Q_2 when $v_{G1} = v_{G2} = 0$ V. Operate all transistors at V_{ov} =0.2 V and assume that for the process technology in which the circuit is fabricated, V_{tn} = 0.5V and μ_n C_{ox} = 250 μ A/V². Neglect channel-length modulation. (1) Determine the values of *R*, R_D , and the *W/L* ratios of Q_1 , Q_2 , Q_3 , and Q_4 . (12 分) (2) What is the input common-mode voltage range for your design? (8 分)

6. For the feedback amp, if the op amp has an open-loop gain μ and a very large input resistance, find $A_f \equiv I_o/V_s$, A, and $\beta \equiv V_f/I_o$. (15 \Im)

