編號： 128
系所組別：工程科學系乙，丙組
考試科目：計算機數學
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．Prove the statement：If S is an arbitrary set，and $P(S)$ is the collection of subsets of S ，then the relation \subseteq is in fact a partial ordering of $P(S) .(P(S)$ is also called the＇power set＇of $S) .(10 \%)$

2．Consider the equation $x_{1}+x_{2}+x_{3}=5$ ，where x_{1}, x_{2} ，and x_{3} must all be nonnegative integers．
（1）How many solutions are there？（Note：The solutions $2+2+1=5$ and $1+2+2=5$ ，for example，are considered to be distinct．）（5\％）
（2）More generally，how many distinct solutions are there to the equation $x_{1}+x_{2}+\ldots+x_{n}=k$ ，where each x_{i} must be a nonnegative integer？（5\％）

3．Consider the algebraic expression $((7-5) * 2) \div 2)+\left(6^{*}(9 \div 3)\right)$ ．
（1）Build the corresponding binary tree．（Note that parenthesis will not be shown in the tree．）（5\％）
（2）Give the corresponding reverse Polish notation expression（or postorder traversal）．（5\％）

4．Suppose you had a supply of two－input AND gates．
（1）How many of these would be needed to build a five－input AND gate？（2\％）
（2）How would you build a circuit that accepts all inputs？Rejects all inputs？（4\％）
（3）How would you＇mask＇one－bit of input？（Note：you can use inverters）．（4\％）

5．Construct a NFA（nondeterministic finite state automaton）that accepts the set of strings of Os and 1s containing no three 1 s in a row．（10\％）

6．（1）A famous basketball player is shooting free throws．He will make the shot with probability 0.90 ，and will miss with probability 0.10 ．Suppose he attempts 10 shots in a row．What is the probability that he misses at least one？（5\％）
（2）Let $\Omega=\{1,2,3,4,5,6,7,8\}$ be a uniform probability space，i．e．，each of the eight atoms has probability $1 / 8$ ． Let $A=\{1,2,3,4\}$ ．Find all events B such that $\operatorname{Pr}\{A \mid B\}=\operatorname{Pr}\{A\}$ ．（5\％）
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

7．（1）Show that the complete graph K_{n} is planar for $n=1,2,3,4$ but for no larger values of n ．（5\％）
（2）Consider a complete bipartite graph $K_{2,3}$ ，which is defined to be a bipartite graph with $|A|=2$ ，and $|B|=3$ ，with every A－vertex connected to every B－vertex．Draw the graph for $K_{2,3}$ ．How many complete matchings are there？ （5\％）
（3）Does either $K_{2,3}$ or K_{5} have a Euler cycle，respectively？Why or why not？（5\％）
（4）Does either $K_{2,3}$ or K_{5} have a Hamiltonian cycle，respectively？Why or why not？（5\％）

8．（1）Prove by induction that $5^{n}-4 n-1$ is exactly divisible by 16 for $n=1,2,3, \ldots$ ． 5% ）
（2）Consider the statement $S(n): n^{2}-n+41$ is prime（i．e．not divisible by any positive integer except itself and 1 ）for all $n=0,1,2, \ldots$ ．
（a）Verify that $S(0), S(1), S(2)$ and $S(3)$ are true．（2\％）
（b）Why must an attempt to prove $S(n)$ by induction fail？（Hint：You can show a counter example．）（3\％）
（3）Consider the homogeneous difference equation with nonconstant coefficients $x_{n}=n x_{n-2}, n=1,2,3, \ldots$ ，with initial conditions $x_{0}=1$ ．Find a general solution to x_{n} ．（Hint：you could calculate enough terms to see a pattern，and confirm your guess using mathematical induction．）（10\％）

