國立成功大學 103 學年度碩士班招生考試試題

系所組別:工程科學系甲、戊組

考試科目:電子電路

編號: 130

考試日期:0223,節次:1

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。請依 題號順序作答。

- 1. Mark each of the following statements True (T) or False (F). (Need NOT to give reasons.) (20 分)
 - (a) When performing DC analysis, the capacitors including coupling, bypass, and internal parasitic capacitors should be opened circuit because their impedances are zero.
 - (b) When performing low-frequency response analysis, the coupling and bypass capacitors should be analyzed, while internal parasitic capacitors should be shorted circuit.
 - (c) When performing high-frequency response analysis, the internal parasitic capacitors should be analyzed, while coupling and bypass capacitors should be opened circuit.
 - (d) The ideal voltage amplifier has infinite input resistance, zero output resistance, and infinite voltage gain.
 - (e) The common drain amplifier can be used to obtain the bulk of the voltage gain.
 - (f) The input stage of an operational amplifier typically uses the differential amplifier to reject the common-mode signals.
 - (g) Feedback can be used to extend the bandwidth of an amplifier.
 - (h) Feedback cannot desensitize the closed-loop gain introduced by the variation of the open-loop gain of the basic amplifier.
 - (i) The current mirror is typically employed to bias the discrete-component circuits.
 - (j) The saturation region of an MOS is used to amplify the small signals.
- 2. The amplifier consists of two identical common-emitter amplifiers connected in cascade. $V_{CC} = 15$ V, $R_1 = 100$ K Ω , $R_2 = 47$ K Ω , $R_E = 3.9$ K Ω , $R_C = 6.8$ K Ω , $\beta = 100$ and $V_T = 25$ mV. Neglect the output resistance r_{o1} and r_{o1} for both transistors. (a) Determine the DC collector current and collector voltage of each transistor. (4 $\hat{\gamma}$) (b) Find R_{in1} and v_{b1}/v_s for $R_S = 5$ K Ω . (4 $\hat{\gamma}$) (c) Find R_{in2} and v_{b2}/v_{b1} . (4 $\hat{\gamma}$) (d) For $R_L = 2$ K Ω , find v_a/v_{b2} . (4 $\hat{\gamma}$) (e) Find the overall voltage gain v_a/v_s . (4 $\hat{\gamma}$)

 $V_A = 1/\lambda = \infty$. $R_1 = 500\Omega$ and $R_2 = 250\Omega$. (a) Determine the bias drain current of Q_3 . (6 \Re) (b) Determine the small-signal voltage gain. (8 \Re) (c) What is the allowed range of v_i for Q_1 , Q_2 and Q_3 operating in the saturation region? (6 \Re)

 $v_i \circ Q_3$ Q_2 Q_2 Q_2 Q_2 Q_1 Q_1

4. For the circuit shown below, the transistor has $\frac{1}{2}k'_{n}\left(\frac{W}{L}\right) = 1 \text{ mA/V}^{2}$, $V_{t} = 0.8 \text{ V}$, $r_{o} = \infty$, $C_{gs} = 2 p\text{F}$, and $C_{gd} = 0.2 p\text{F}$. Determine: (a) the midband voltage gain V_{o}/V_{i} (10 %), and (b) the upper 3-dB frequency, f_{H} in Hz. (10 %). Hint: You can apply Miller's theorem and, then use the open-ckt time constant.

編號: 130 國立成功大學 103 學年度碩士班招生考試試題	共 3 頁,第3頁
系所組別:工程科學系甲、戊組	
考試科目:電子電路	考試日期:0223,節次:1
※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。	
5. The transistors Q_1 and Q_2 have $h_{fe} = 80$ and $V_T = 25 \text{ mV}$, and are biased at $I_{c1} = 0.2 \text{ mA}$ and	
$I_{c2}=8~{ m mA}$, respectively. (a) What are the feedback eta and the <i>current gain</i> of basic amplifier A? (10 分)	
(b) Find $A_f \equiv V_o / V_S$ and R_{in} . (10 $\hat{\mathcal{T}}$)	

.

