※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．（ 20% ）
We want to use the Newton＇s method to solve the following nonlinear equations：

$$
\left\{\begin{array}{c}
x_{1}^{2}+x_{2}-37=0 \\
x_{1}-x_{2}^{2}-5=0 \\
x_{1}+x_{2}+x_{3}-3=0
\end{array}\right.
$$

Derive the iteration expression for finding the roots．

2．（20\％）
The van der Pol equation is a model of an electronic circuit that arose back in the days of vacuum tubes：
$\frac{d^{2} y}{d t^{2}}-\left(1-y^{2}\right) \frac{d y}{d t}+y=0$ ．Given the initial conditions，$y(0)=y^{\prime}(0)=1$ ，solve this equation from $t=0$ to $t=0.6$ using any integration method with a step size of 0.2 ．

3．(25%)
Given the following set of data：$\quad \frac{x}{f(x)}\left|\frac{-0.1}{-2.3}\right| \frac{0.0}{-2.2}\left|\frac{0.2}{-1.94}\right|$
（a）Find the $2^{\text {nd }}$ degree Lagrange interpolating polynomial passing through the above points．（ 10% ）
（b）Find the $2^{\text {nd }}$ degree polynomial via the least square approach．（ 10% ）
（c）What is $f(0.1)$ from（a）and（b）？（5\％）

4．(20%)
We want to integrate $\int_{-1}^{1} f(x) d x$ numerically by the two－term Gaussian quadrature i．e．
$\int_{-1}^{1} f(x) d x=c_{1} f\left(t_{1}\right)+c_{2} f\left(t_{2}\right)$. Find c_{1}, c_{2}, t_{1} and t_{2}.

5．（15\％）
（a）For a value in a decimal（十進位）system is 11.1 ，what is its expression in a binary（二進位）system？（5\％）
（b）Form part（a），how many bits does a computer require to store the binary digits for the decimal number
11．1？What will happen if a personal computer has only 32 bits to store the number？（ 10% ）

