編號: 119	國立成功大學 103	學年度碩士班招生考試	試題 共	1 頁,第1頁
系所組別:工程科學系丙	〕 組			
考試科目:近代物理			考試日期	:0223,節次:2
※ 考生請注意:本試題	不可使用計算機。	請於答案卷(卡)作答,於	本試題紙上作答者,	不予計分。
1. A moving particle behaves in certain ways as though it has a wave nature. (30%)				
(1) Define the group velocity and the phase velocity of the de Broglie waves. (10%)				
(2) Show that the product of the group velocity and the phase velocity is equal to c^2 , where c is the velocity of				
light. (10%)				
(3) An electron has a de Broglie wavelength of 2.00×10^{-12} m. Find its kinetic energy and the phase and group				
velocities of its de Broglie waves. (10%)				

2. Evidence for the electron spin was provided by the Stern-Gerlach experiment. (30%)

(1) Sketch and briefly describe the key features of the experiment. (10%)

(2) What is the prediction of classical mechanics for this experiment? (10%)

(3) Explain what was observed in the experiment and how this observation may be interpreted in terms of electron spin. (10%)

3. The energy of a trapped particle can be quantized. (20%)

(1) Given a particle that is in a box with a width L, show that the general formula for the permitted De Broglie wavelengths of the trapped particle is $\lambda_n = 2L/n$, n = 1,2,3,... (10%)

(2) If an electron is trapped in a box with L = 0.15 nm, find the permitted energies of the electron. (10%)

4. The uncertainty principle, which was discovered by Werner Heisenberg in 1927, is one of the most important of physical laws. (20%)

(1) Write down the two Heisenberg uncertainty relations, one involving energy and one involving momentum. Explain the meaning of each term. (10%)

(2) Estimate the kinetic energy of an electron in a hydrogen atom by the uncertainty principle. (10%)