系所組別：工程科學系甲乙丙丁戊組
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．Solve $x^{2} y^{\prime \prime}-x y^{\prime}+y=\cos (\ln x)$ ．$(20 \%)$
2．Solve $\frac{d}{d t}\left\{\begin{array}{l}x \\ y\end{array}\right\}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\left\{\begin{array}{l}x \\ y\end{array}\right\}+e^{-t}\left\{\begin{array}{l}1 \\ 0\end{array}\right\}$ with $\left\{\begin{array}{l}x \\ y\end{array}\right\}(0)=\left\{\begin{array}{l}1 \\ 1\end{array}\right\} . \quad(20 \%)$

3．The area enclosed by two vectors $d \vec{r}_{1}$ and $d \vec{r}_{2}$ is $d A=\left|d \vec{r}_{1} \times d \vec{r}_{2}\right|$ ．
Questions：
a．The surface $\sum$ is given by $z=z(x, y)$ ．Derive the area $d \sigma$ of the lateral surface in terms of $d x$ and $d y .(5 \%)$
b．Calculate $\iint_{\Sigma}\left(x^{2}+y^{2}\right) d \sigma$ ，where the surface is given by $z=16-x^{2}-y^{2}$ lying between $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=9 .(15 \%)$

4．Solve $\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}}=0,1 \leq r \leq 2,0 \leq \theta \leq 2 \pi, T(1, \theta)=0, T(2, \theta)=f(\theta)$ where $f(\theta)=f(-\theta)$ ．

5．The complex variable $z$ can be expressed as $z=x+i y$ or $z=r e^{i \theta}$ ，where $i=\sqrt{-1}$ ．
Questions ：
（a）Show that $\sin ^{2} z+\cos ^{2} z=1$ ．（5\％）
（b）Calculate $\int_{0}^{2 \pi} \frac{2 \sin \theta}{2+\sin ^{2} \theta} d \theta$ ．

