第 1 頁，共 1 頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．A system is described by $\mathbf{z}=\mathbf{H x}+\mathbf{v}$ ，where $\mathbf{z} \in R^{m \times 1}$ is the observation vector，the system matrix $\mathbf{H} \in R^{m \times n}, m \geq n$ and $\operatorname{rank}(\mathbf{H})=n, \mathrm{x} \in R^{n \times 1}$ is the fixed system state，and $\mathbf{v} \in R^{m \times 1}$ is the uncorrelated Gaussian noise vector with variance σ_{v}^{2} ，i．e．$\sim v \sim N\left(\mathbf{0}_{m \times 1}, \boldsymbol{\Sigma}_{v}\right)$ has zero mean $\mathbf{0}_{m \times 1}$ ，which is an $m \times 1$ vector with all－zero elements，and covariance matrix $\Sigma_{v}=\sigma_{v}^{2} \mathbf{I}_{m \times m}$ ，where $\mathbf{I}_{m \times m}$ is the $m \times m$ identity matrix．Based on the observation vector，the system state is assumed to be estimated by $\hat{\mathbf{x}}=\left(\mathbf{H}^{T} \mathbf{W H}\right)^{-1} \mathbf{H}^{T} \mathbf{W z}$ ，where $\mathbf{W}=\boldsymbol{\Sigma}_{\boldsymbol{v}}^{-1}$ is the inverse matrix of $\boldsymbol{\Sigma}_{\boldsymbol{v}}$ ．
（a）Let＇s define the residue vector $\mathbf{r}=\mathbf{z}-\mathbf{H} \hat{\mathbf{x}}$ ．Find the mean vector and covariance matrix of \mathbf{r} ．The covariance matrix should be expressed by $\boldsymbol{\Sigma}_{v}, \mathbf{W}$ ，and \mathbf{H} ．Hint：the covariance matrix of a zero－ mean random vector \mathbf{b} is $E\left[\mathbf{b b}^{r}\right]$ ．（10 pt．）
（b）If the system is attacked by inserting an attack vector $\mathbf{a}=\mathbf{H c}$ ，where $\mathbf{c} \in R^{n \times 1}$ is anvarbitrary non－ zero vector，into the observation vector as $\mathbf{z}_{a}=\mathbf{z + a}=\mathbf{H}(\mathbf{x}+\mathbf{c})+\mathbf{v}$ ．Under \mathbf{z}_{a} ，find the estimated system state $\hat{\mathbf{x}}_{a}=\left(\mathbf{H}^{T} \mathbf{W H}\right)^{-1} \mathbf{H}^{T} \mathbf{W} \mathbf{z}_{a}$ ．The estimated system state should be expressed by $\boldsymbol{\Sigma}_{v}, \mathbf{W}$, $\mathbf{H}, \mathbf{x}, \mathbf{c}$ ，and $\mathbf{v .}$（ 5 pt．）
（c）Find the residue under attack by $\mathbf{r}_{a}=\mathbf{z}_{a}-\mathbf{H} \hat{\mathbf{x}}_{a}$ ．The residue should be expressed by $\boldsymbol{\Sigma}_{v}, \mathbf{W}, \mathbf{H}$ ， and $\mathbf{v .}$（ 5 pt ．）
2．Let P^{2} be the set of polynomials over R with powers less than 3 ．Prove $\left\{1,(x-3),(x-3)^{2}\right\}$ is a base of P^{2} ．（20 pt．）
3．A communication system transmits binary information over a channel that introduces random bit error for both binary 0 and 1 with probability $p=0.01$ ．The transmitter transmits each information bit three times：

$$
0 \rightarrow 000 ; \quad 1 \rightarrow 111
$$

and a decoder takes a majority vote of the received bits to decide on what the transmitted bit was．Find the probability that the receiver will make an incorrect decision．（ 20 pt ．）
4．A current with the Rayleigh probability density function

$$
f_{I}(i)=\left\{\begin{array}{lr}
\left(i / a^{2}\right) \exp \left(-i^{2} / 2 a^{2}\right), & i>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Is passed through a resistor with a resistance of $2 \pi \Omega$ ．If the mean value of the current is $E[I]=a(\pi / 2)^{1 / 2}=2 \mathrm{Amps}$ and the mean square current $E\left[I^{2}\right]=2 a^{2}$ ，what is the mean value of the power dissipated in the resistor？Express your answer using a constant．（ 20 pt．）
5．A transistor may come from any one of three manufactures A, B ，and C with probabilities $P_{A}=0.25$ ， $P_{B}=0.5$ ，and $P_{C}=0.25$ ，respectively．The probabilities that the transistor will be defective in manufactures A, B ，and C are $0.01,0.02$ ，and 0.03 ，respectively．
（a）Find the probability that a randomly selected transistor will be defective．（ 10 pt ．）
（b）If the chosen transistor is defective，what is the probability that this transistor comes from manufacture B？（10 pt．）

