國立成功大學 110學年度碩士班招生考試試題

編 號: 113

系 所:工程科學系

科 目:電磁學

日 期: 0203

節 次:第2節

備 註:不可使用計算機

國立成功大學 110 學年度碩士班招生考試試題

编號: 113

系 所:工程科學系 考試科目:電磁學

考試日期:0203,節次:2

第1頁,共1頁

1	A A-A
*	考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
í.	Vector analysis provides a concise way to express the relations of quantities in the electromagnetic model. (25%) (1) What is the physical definition of the gradient of a scalar field? (10%) (2) Show that the space rate of increase of a scalar field of space coordinate V can be described by $dV = (\nabla V)$.
	dl, where dl denotes the vector differential displacement in a chosen coordinate system. (15%)
2.	Given a charged parallel-plate capacitor with an area A. Find the force on the conducting plates of the capacitor that are separated in air by a distance y. (25%)
3.	Given a cylindrical bar magnet with a radius a and length h . Moreover, assume that the cylinder is uniformly magnetized and has axial magnetization $M = a_z M_0$. Find the magnetic flux density on the axis of the cylinder. (25%)
4.	Consider a transmission line that is described by the following four parameters: R (resistance per unit length), L (inductance per unit length), G (conductance per unit length), and C (capacitance per unit length). (25%)
	(1) Describe the propagation constant of the transmission line in terms of R, L, G and C for sinusoidal excitation.
	(15%)(2) Describe the characteristic impedance of the transmission line in terms of R, L, G and C for sinusoidal excitation.(10%)
	X-1-1/2
	· ·