國立成功大學 111學年度碩士班招生考試試題

編 號: 109

系 所:工程科學系

科 目: 通信系統

日 期: 0220

節 次:第1節

備 註:不可使用計算機

國立成功大學 111 學年度碩士班招生考試試題

編號: 109

所:工程科學系 考試科目:通信系統 考試日期:0220,節次:1

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1) (20 marks, 4 marks each) Answer the following questions:
 - a) Please spell out the full names of OFDM and OFDMA.
 - b) Please tell me if the satellite communications will be introduced in 6G.
 - c) Please spell out the abbreviation of AWGN.
 - d) Please explain what are M2M communications and D2D communications.
 - e) Which one is a major performance impairing factor in mobile communications? a) noise; b) time-selective fading.
- 2) (20 marks, 4 marks each) Anwser the following questions:
 - a) If m(t) is the message signal and $c(t) = A_c \cos(2\pi f_c t)$ is the carrier signal, write down the expression of a DSB-SC signal u(t).
 - b) What are the differences between the single-side band (SSB) signal and the vestigial single-side band (VSB) signal.
 - c) If m(t) is the message signal and $c(t) = A_c \cos(2\pi f_c t)$ is the carrier signal, write down the expression of the phase modulated signal with its phase deviation constant of kp.
 - d) If m(t) is the message signal and $c(t) = A_c \cos(2\pi f_c t)$ is the carrier signal, write down the expression of the frequency modulated signal with its frequency deviation constant of k_f .
 - e) If m(t) of bandwidth W is the message signal and $c(t) = A_c \cos(2\pi f_c t)$ is the carrier signal, please compare the bandwidths of DSB-SC signal and FM signal (if the frequency modulation index is β_f , where $\beta_f = \frac{k_f \max[|m(t)|]}{W}$).
- 3) (20 marks, 4 marks each) Consider the conventional AM signal of

$$u(t) = A_c[1 + k_a \cos(2\pi f_m t)] \cos(2\pi f_c t),$$
 (1)

where m(t) is a sinusoidal modulating signal with frequency f_m , k_a is the modulation factor, A_c is the amplitude of the carrier signal, and f_c is the carrier frequency $(f_c \gg f_m)$. Assume that the modulation index is $k_a = 2$, and the modulated conventional AM signal u(t) is applied to an ideal envelop detector to produce the output signal v(t).

- a) Write down the expression of the output signal v(t).
- b) Is v(t) is a periodic signal or a non-periodic signal?
- c) Is v(t) an even or odd function?
- d) If needed, determine the Fourier series representation of v(t).
- e) What is the ratio of the second-harmonic term amplitude to the fundamental frequency term amplitude in v(t)?

國立成功大學 111 學年度碩士班招生考試試題

編號: 109

系 所:工程科學系 考試科目:通信系統

考試日期:0220,節次:1

第2頁,共2頁

- 4) (20 marks, 5 marks each) Assume that a square-law detector uses a nonlinear device whose transfer characteristic is defined as $v_2(t) = a_1v_1(t) + a_2v_1^2(t)$, where a_1 and a_2 are constants, $v_1(t)$ is the input signal, and $v_2(t)$ is the output signal. The input signal is an AM modulated signal $v_1(t) = A_c[1+k_am(t)]\cos(2\pi f_c t)$, where A_c is the amplitude of AM modulated signal, k_a is the modulation factor, m(t) is the message signal of bandwidth of W, and f_c is the carrier frequency ($f_c \gg W$).
 - a) What is the output signal $v_2(t)$.
 - b) Please identify which terms in $v_2(t)$ are interferences and which are useful signals.
 - c) If the signal $v_2(t)$ passes through a low-pass filter of bandwidth W, please write down the output signal $v_3(t)$ from the filter.
 - d) Find the conditions for which the message signal m(t) can be successfully recovered from $v_3(t)$ (Hint: all baseband signals in $v_3(t)$ should be taken into account to recover the message signal m(t)).

Fig. 1. The message signal m(t) in an angle modulation system.

- 5) (20 marks, 4 marks each) Assume that the message signal m(t) fed into an angle modulation system is shown in Fig. 1, which is a sawtooth wave defined in the positive time axis with its peak amplitude of A and its period of T_0 .
 - a) If the message signal m(t) is fed into a phase modulation (PM) device, write down the expression of the output PM signal $u_{PM}(t)$.
 - b) What is the instantaneous frequency of the PM signal?
 - c) Sketch the time-domain PM signal waveform $u_{PM}(t)$.
 - d) If the message signal m(t) is fed into a frequency modulation (FM) device, write down the expression of the output FM signal $u_{FM}(t)$.
 - e) Sketch the time-domain FM signal waveform $u_{FM}(t)$.