國立成功大學 113學年度碩士班招生考試試題

編 號: 107

系 所:工程科學系

科 目:通信系統

日 期: 0202

節 次:第1節

備 註:不可使用計算機

: 超立成功大學113學年度碩士班招生考試試題

系 所:工程科學系

考試科目:通信系统 考試日期:0202, 65次:1

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1) Problem 1 (20%)

a) (10%) Given an output signal from an AM modulator as

$$u(t) = 4\cos(160\pi t) + 8\cos(200\pi t) + 4\cos(240\pi t).$$

determine the message signal m(t) and the carrier c(t).

b) (10%) Assume a DSB-SC modulator has a carrier signal as

$$c(t) = 20\cos(2\pi f_c t).$$

If the message signal is

$$m(t) = \operatorname{sinc}^2(2t),$$

determine the spectrum and the bandwidth B_T of u(t).

2) Problem 2 (30%)

- a) If carrier signal is $c(t) = 10\cos(2\pi f_c t)$, message signal is $m(t) = 20\cos(20\pi t)$, and the message signal is used to frequency modulate the carrier with a frequency deviation constant $k_f = 100$.
 - (10%) Determine modulated signal u(t) and modulation index β_f .
 - (5%) Determine average power P_c of carrier signal c(t).
 - (5%) Determine the bandwidth of modulated signal B_c .
- b) (10%) Given that a superheterodyne FM radio receiver operates in a frequency range of 88 MHz to 108 MHz. Assume required IF frequency is $f_{\rm IF}=10$ MHz. What is the range of local oscillator frequency $f_{\rm LO}$ at the receiver?

3) Problem 3 (20%)

Consider a phase-modulated signal as

$$u(t) = 10\cos \left[2\pi f_c t + 4\cos(200\pi t)\right],$$

where carrier frequency is $f_c = 1$ MHz and phase deviation constant is $k_p = 10$.

- (5%) Determine the message signal m(t).
- (5%) Determine the modulation index β_p .
- (5%) Determine the average power P_c of the carrier signal c(t).
- (5%) What is the bandwidth of modulated signal B_c ?

编號: 107

國立成功大學113學年度碩士班招生考試試題

系 所:工程科學系

考試科目:通信系统

考試日期:0202, 前次:1

第2頁,共2頁

※ 考生請注意:本試題不可使用計算機· 請於答案卷(卡)作答·於本試題紙上作答者·不予計分。

4) Problem 4 (15%)

Given a FM modulated signal with frequency deviation constant k_f and message signal m(t)

$$u(t) = A_c \cos \left[2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau \right].$$

a) (10%) If $\left|2\pi k_f \int_{-\infty}^t m(\tau)d\tau\right| \ll 1$, show that the FM modulated signal can be approximated by

$$A_c \cos(2\pi f_c t) - A_c 2\pi k_f \sin(2\pi f_c t) \int_{-\infty}^t m(\tau) d\tau.$$

b) (5%) The FM modulated signal can be rewritten as

$$u(t) = A_c \cos(2\pi f_c t) - A_c m(t) \sin(2\pi f_c t).$$

If it passes through a mixer demodulator with its local carrier $-2\sin(2\pi f_c t)$, as shown in the figure below. What is the output signal y(t)?

5) Problem 5 (15%)

Assume that DSB-SC modulated signal is $u(t) = A_c m(t) \cos(2\pi f_c t)$ and a coherent receiver is shown as follows:

where the bandwidth of received bandpass signal u(t) + n(t) is 2W, the bandwidth of bandpass filter is B_T and that of the low-pass filter is B_L . Assume $B_T > 2W$ and $B_L > W$, the power of the baseband signal is P_M , and the noise is a white Gaussian noise with power spectral density $\frac{N_0}{2}$.

- (5%) Determine the signal after AM demodulation v(t).
- (5%) Determine the output signal y(t).
- (5%) Determine the output SNR.