國立成功大學77學年度研究所學考試(材料力學試題)# 2頁

- The couple M acts in a vertical plane and is applied to a beam oriented as shown by Fig 1.
 Determine (a) the angle that the neutral axis forms with the horizontal plane. (b) the maximum tensile stress in the beam. (20%)
- 2. A brass ring of 120mm outside diameter fits exactly inside a steel ring of 120mm inside diameter when the temperature of both rings is To^OC , as shown by Fig.2. Find out the thickness ration tb/t_s suth that the steel ring is just yield when the temperature of both rings are raised to $To+\Delta T^OC$. Maximum shear stress criteria is used for yielding. (20%)
- 3. For the given angle shape with uniform thickness t and vertical loading V, as shown in Fig.3, assume the shear stress distribution in the horizontal leg \mathcal{T}_h and the vertical leg \mathcal{T}_V are parabolic with zeros at A and B. (a) show that the coordinate of centroid C, (\bar{x}, \bar{y}) is $(\frac{a}{2}, \frac{\alpha}{1+\alpha}, \frac{b}{2}, \frac{1}{1+\alpha})$ where α is the ratio A_h/A_V of the cross section areas of the horizontal and vertical legs. (b) show that α is zers at point E and is maximum at point F. (c) show that α is maximum at point H and (d) the maximum value can be expressed in terms of V and the geometric parameters a, b, t and α only. (20%)
 - (Hint) (i) Line FH of maximum shearing stress is located on the neutral axis which passes through C . (ii) Sketch \mathcal{T}_h and \mathcal{T}_V before proceeding the solutions of problem.
- 4. A device is designed , as shown in Fig.4 , to stop impact due to an object with mass m and impact velocity v . This device is made of material with Young's modulus E and has a uniform cross section with diameter d and moment of inertia I . Assume R >> d so that the axial and shear strain energy is very small compared against the strain energy of bending moment. If the kinetic energy (KE) of impact is completely absorbed by the device, then the vertical deflection $\Delta_{\mathbf{Y}}$ and the horizontal deflection $\Delta_{\mathbf{h}}$ due to impact can be denoted by $\Delta_{\mathbf{V}} = C_{\mathbf{V}}\sqrt{\mathrm{KE}}$ and $\Delta_{\mathbf{h}} = C_{\mathbf{h}}\sqrt{\mathrm{KE}}$. Compute those proportional parameters $C_{\mathbf{V}}$ and $C_{\mathbf{h}}$ in terms of R,E and I . (20%)
- 5. In tensile test machine, misalignment along the loading chain (ie. grip system and specimen) introduces eccentric load on the specimen. The degree of eccentricity ζ is defined as δ_b/δ_0 here δ_b is the maximum bending stress and δ_0 is the average axial stress in specimen. Consider a round bar as a specimen whose surface is bounded by 4 SR-4 strain gages separated 90^0 from each other. The axial strain reading is denoted as ϵ_A , ϵ_B , ϵ_C and ϵ_D . Supposed the axial load be applied at point ϵ_D as shown in Fig.5 and the material be linearly elastic, (1) Explain why ϵ_D (the average axial strain) = $\frac{1}{2}(\epsilon_A + \epsilon_C) = \frac{1}{2}(\epsilon_B + \epsilon_D)$? (2) If ϵ_D , then ϵ_D is the largest positive strain and ϵ_D the 2nd largest positive strain. (3) Find ϵ_D is ϵ_D 1 cos ϵ_D .

國立成功大學77 學年度研究所入學考試(材料力學 試題)第2頁

Fig. 2.

Steel:

Thickness ts

Young's modulus Es

Thermal Gefficient
of Expansion α_s Tensile yield stress of

Brass:

th

Eb = \frac{1}{2}Es

\alpha_b > \alpha_s

-(a 155