國立成功大學78 學年度工程科學研考試(工程數學 試題)第 1 頁

(甲,乙级)

1. Solve

$$x + 2y + 4z - w = 3$$

$$3x + 4y + 5z - w = 7$$

 $x + 3y + 5z + 5w = 4$

- 2. Define a function f(t)=k on the set of rational number Q
 - (a) Whether f is periodic or not? prove.
- (10%) (b) Is f(t) + sin t periodic? explain.
 - (c) If you have proved f is periodic, then (I) what is the period of f? (II) Does the fundamental period of f exist? explain.
- 3. Solve $y' + 2ay + (a^2 + b^2) \int_0^t y dt = f(t), y(0)=k$
- 4. If x_1, \ldots, x_n are eigenvectors corresponding, respectively; to the distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ of a hermitian matrix $H \in \mathfrak{C}^{n \times n}$
- (15%) (a) prove that $\{x_1, \ldots, x_n\}$ is a base.
 - In (b) and (c), the matrix inversion is not allowed to use.
 - (b) express any given vector x in terms of the combination of x_1, \ldots, x_n .
 - (c) solve y in Hy=x.
 - 5. Theorem: If f is a periodic function which satisfies the Dirichlet conditions and has nonzero jumps F_1, F_2, \ldots, F_{tu} at the respective points $t_1 < t_2 < \ldots < t_m \quad \text{in one period} \quad d \leqslant t \leqslant d + 2p \quad \text{of f, where } t_1 \quad \text{may}$
- (15%) be d, but $t_m \neq d+2p$, then

$$a_n = -\frac{p}{n\pi} b_n^{(\prime)} - \frac{1}{n\pi} \sum_{k=1}^{m} F_k \sin \frac{n\pi t_k}{p} , \qquad n \neq 0$$

$$b_n = \frac{P}{n\pi} a_n^{(\prime)} + \frac{1}{n\pi} \sum_{k=1}^m F_k \cos \frac{n\pi t_k}{p}$$

where $a_n^{(\prime)}$ and $b_n^{(\prime)}$ are coefficients of $\cos(\eta \pi t/p)$ and $\sin(n\pi t/p)$ in the Fourier expansion of f(t).

Question:

Use the above theorem to find $\mathbf{a_0}$, $\mathbf{a_i}$, $\mathbf{b_i}$ in

$$f(t)=a_0 + \sum_{i=1}^{\infty} (a_i \cos \frac{i\pi t}{p} + b_i \sin \frac{i\pi t}{p})$$

where $f(t)=t^3$, $-\pi \leqslant t < \pi$

國立成功大學 78 學年度理科學研究考試(工程數學 試題) 其 2 頁

(甲,乙维)

6. Wave equation:

(15%)
$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$$

boundary conditions: u(0,t)=u(1,t)=0, initial conditions: $u(x,0)=\sin(\pi x)$, $\frac{\partial u}{\partial t}\Big|_{(x,0)}=0$,

Find u(0.5,1) by the method of Laplace Transforms.

7. Given
$$f(z) = \frac{(z^2 + 1)^3}{(z^2 + 2z + 2)^2}$$
, solve $\oint_C \frac{f'(z)}{f(z)} dz$

where c is the circle of |z| = 4.

8. Transform $\int_{\Omega} \int_{\Omega} e^{(x-y)/(x+y)} dxdy$, where Ω is the region in the first quadrant between the lines x+y=2 and x+y=3, by making the transformation u=x-y and v=x+y. Then evaluate the integral.