國立成功大學八十學年度工程科學考試(工數 試題) 第1页

1. If R is a plane region bounded by a simply closed curve, and if U(x,y), V(x,y), $\frac{\partial U}{\partial y}$ and $\frac{\partial V}{\partial x}$ are continuous at all points of R and its boundary C. Prove

$$\oint_{C} (Udx + Vdy) = \iint_{R} (\frac{\partial V}{\partial x} - \frac{\partial U}{\partial y}) dxdy$$

provided that the line integral is taken in the positive direction around C. (10 %)

- 2. Let U be a unitary matrix. Prove (15%)
 - (a) U is normal
 - (b) $\|U\vec{x}\| = \|\vec{x}\|$ for all $\vec{x} \in \mathbb{C}^n$
 - (c) If λ is an eigen value of U, then $|\lambda| = 1$.
- 3. If C is a closed curve, and if f(z) is analytic except at a finite number of singular points z_1 , ... and z_n in the interior of C. Prove (10%)

$$\frac{1}{2\pi i} \oint_C f(z) dz = \sum_{r=1}^n \underset{z=z_r}{\text{Res}} f(z)$$

- 4. For the domain $(x, y) \in [0, 1] \times [0, 1]$, the following statements are known
 - (a) the solution for $\nabla^2 u = 0$ with $u(0, y) = g_1(y)$, $u(1, y) = g_2(y)$, u(x, 0) = 0 and u(x, 1) = 0 is $u_1(x, y)$
 - (b) the solution for $\nabla^2 u = 0$ with u(0, y) = u(1, y) = 0, $u(x, 0) = h_1(x)$ and $u(x, 1) = h_2(x)$ is $u_2(x, y)$
 - (b) the solution for $\nabla^2 u = f(x, y)$ with u(0, y) = 0, u(1, y) = 0, u(x, 0) = 0 and u(x, 1) = 0 is $u_3(x, y)$. Ouestion:

What is the solution for $\nabla^2 u = f(x, y)$ with $u(0, y) = h_1(y)$, $u(1,y) = h_2(y)$, $u(x, 0) = g_1(x)$ and $u(x, 1) = g_2(x)$? (15%)

107

5. Find the solution of the following differential equation, (10%)

y" +
$$\frac{1}{x}$$
y' + 1 = 0, y(1) = $-\frac{1}{4}$ and y'(1) = $-\frac{1}{2}$

6. Find the solution of the following equation, (10%)

$$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2}$$
 $y(0,x) = 1$, $y(t,0) = 0$, $\lim_{x \to \infty} y = 1$.

Hint: (a) Use $\eta = \frac{x}{2\sqrt{t}}$ to transform the partial differential equation into a differential equation.

(b) error function, erf
$$(\eta) = \frac{2}{\sqrt{\pi}} \int_{0}^{\eta} \exp(-z^2) dz$$
; erf(∞) = 1.

國立成功大學八十學年度工程科學 考試(工數 試題)第2頁

7. Solve the following initial value problem by using the method of Laplace transformation: (10%)

$$y'' + 9y = 0$$
, $y(0) = 0$, $y'(0) = 3$

8. Find the Fourier series of the periodic function f(x), (10%)

$$f(x) = \begin{cases} -1 \text{ when } -\pi < x < 0 \\ +1 \text{ when } 0 < x < \pi \end{cases} \text{ and } f(x+2\pi) = f(x)$$

9. Use the finite difference method to solve the following differential equation. Only three nodes are used in solving this problem. What are the values of y at x = 1.0 and 2.0? (10%)

$$y'' + y = 1$$
, $y(0) = 2$, $y'(2) = -1$
 $x = 0$ 1 2