國立成功大學八十學年度工科的入學考試(控制系統試題)共

1. The open-loop transfer function of a unity feedback control system is given by

- (a) Discuss the stability of the closed-loop system as a function of K.
- (b) Determine the values of K that will cause sustained oscillations in the $\dot{}$ closed-loop system. What are the frequencies of oscillations?
- 2. The block diagram of a digital control system is shown in Fig. 1. The controlled process is modeled by the following state equations:

$$\dot{x}_1 = -2x_2$$

$$\dot{x}_2 = -2u$$

and output equation is $c = x_1$. The controller is the digital PD controller with the transfer function:

$$G_{c}(z) = K_{p} + \frac{K_{D}(z-1)}{Tz}$$

Find K and K in terms of the sampling period T so that two of the roots of the closed-loop characteristic equation are at z = 0.5 and 0.5. Find the other characteristic equation root.

3. A control system is shown in Fig. 2. The system is assumed to be at rest initially. r(t) = a unit-step input. Determine the coefficient a so that

4. A system is given by

Fig. 2

where

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -500 & -150 & -20 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Apply state feedback u = -KX and use four different methods to find the elements of K so that the eigenvalues of the closed-loop system are at -5, -5+j5 and -5-j5.

5. A discrete-time system is described by the state equation:

$$X((k+1)T) = AX(kT) + Bu(kT)$$

where

X(kT) = nxl state vector

u(kT) = control signal

A = nxn nonsingular matrix

A CANADA MARKET MARKET

B = nxl matrix

T = sampling period Prove that the system is completely state controllable if and only if the matrix [B AB A^2B $A^{n-1}B$] is of rank n.

113