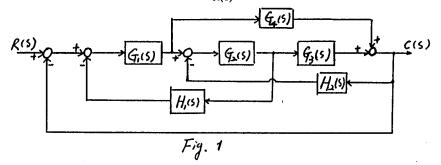
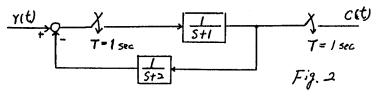
國立成功大學八十一學年度工程於湖灣試(於訓》經 試題) 第/頁

- 1. (20%) Consider the following questions:
 - (a) If the unit step response of a given system is $1 + 4e^{(-2t)} 3e^{(-3t)}$, please find the transfer function of this system.
 - (b) What is the output of the system found in part (a) if the input is $e^{(-2t)}$.
 - (c) Find the transfer function, $G(s) = \frac{C(s)}{R(s)}$, of the system shown in Fig. 1.
 - (d) Find the transfer function, $G(z) = \frac{C(z)}{R(z)}$, of the system shown in Fig. 2.

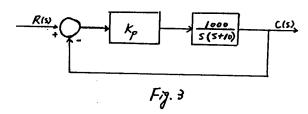




- 2. (15%) A controlled system with a proportional controller is shown in the fig. 3.
 - (a) Find the transfer function of the closed-loop system.
 - (b) Find the value of the natural undamped frequency ω_n .
 - (c) Find the value of the damping ratio ζ .
 - (d) Find the value of K_p so that the steady-state error due to unit ramp input is 0.0001

If the above P controller is replaced with a PD controller, $K_p + K_d s$,

(e) Find the value of K_p and K_d so that the ramp-error constant K_v is 1000 and the damping ratio is 0.5.



3. (15%) The characteristic equation of a certain closed-loop control system is given by

$$s^3 + 3s^2 + (K+2)s + 3K = 0.$$

- (a) Determine the range of K so that the system is stable.
- (b) Determine the value of K that will cause sustained oscillation in the system. What is the frequency of oscillation?

182

國立成功大學八十一學年度环報物學試(於別系統 試題) 第二頁

4. A controlled system is described by the following state-space equations:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \qquad \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix}$$
$$y = x_1.$$

- (a) (5%) Find a state-feedback law $u=-k_1x_1-k_2x_2+r$ to move the poles to $s=-2\pm j$.
- (b) (5%) Find the region in the k_1-k_2 plane on which the closed-loop system has $w_n \leq 10 \ rad/scc$ and $\zeta \leq 0.6$.
- (c) (10%) Find a state-feedback law $u=-k_1x_1-k_2x_2$ to minimize the following performance criterion

 $J = \int_0^\infty (u^2(t) + y^2(t))dt.$

- 5. (10%) Consider a body of unit mass moving along a line under the influence of a force u. Let $x_1(t) = y(t)$:its displacement at time t, and $x_2(t) = \dot{y}(t)$:its velocity at time t.
 - (a) Find the state-space equations of the system.
 - (b) Let u = -y, plot the state trajectory in the x_1 - x_2 plane for $(y(0) = 1, \dot{y}(0) = 1)$.
 - (c) Apply the force u = -sgn(y), and plot the state trajectory in the x_1 - x_2 plane for the initial conditions given in part (b). Where

$$sgn(y) = \begin{cases} 1, & y > 0 \\ -1, & y < 0 \end{cases}.$$

6. (20%)

- (a) If $\{A, b, c, d\}$, $d \neq 0$ is a realization with $H(s) = c(sI A)^{-1}b + d$, show that $\{A (bc/d), b/d, -c/d, 1/d\}$ is realization for a system with transfer function $\frac{1}{H(s)}$.
- (b) Show that the zeros of H(s) given in part (a) can be computed as the roots of the following equation

$$det \begin{bmatrix} sI - A & -b \\ c & d \end{bmatrix} = 0.$$