國立成功大學几十二學年度工程科學獨考試(控制系統 試題)第1頁

- 1. (20%)
 - (a) A commonly used op-amp circuit is shown in Fig. 1(a). Please find the $V_o(s)$ and $v_o(t)$.
 - (b) Give any comments on the output voltage $v_o(t)$ found in part (a).
 - (c) Find the transfer function $\frac{Y_1(s)}{F(s)}$, $\frac{Y_2(s)}{F(s)}$ of the system shown in Fig. 1(b).

- 2. (10%) The block diagram of a sampled-data control system is shown in Fig. 2.
 - (a) Find the closed-loop transfer function $\frac{C(z)}{R(z)}$.

- 3. (10%)
 - (a) For the system of Fig. 3(a), determine if the system is controllable or observable? Why!
 - (b) For the system of Fig. 3(b), determine the controllability and observability.

國立成功大學儿十二學年度工程科學院門試(松則系統 試題)第2頁

- 4. (20%) A block diagram of a servo-control system for one of the axes of a plotter is shown in Fig. 4.
 - (a) Let $K_d = K$ and $K_v = 0$, sketch the root-locus for the system.
 - (b) If $K_d = 1$, find the range of K_v for which the system is stable.
 - (c) If $K_{\nu} = 1$, find the range of K_d for which the system is stable.
 - (d) Find the region of the $K_d K_v$ plane on which the system is stable.

5. (20%) For a closed-loop system of Fig. 5, the plant transfer function is given by

$$G_p(s) = \frac{5}{s+1}.$$

- (a) If $G_c(s) = 1$, find the steady-state error for a unit step input and $r(t) = 7 + 5\cos(3t + 45^\circ)$.
- (b) Design a phase-lag compensator $G_c(s)$ such that the pole of closed-loop system with $G_c(s) = 1$ does not move significently and the steady-state error is less than or equal to 0.1 for a unit step input.
- (c) Design a PI compensator $G_c(s)$ such that the steady-state error is less than or equal to 0.1 for a unit step input and the closed-loop system has a pole at s = -5.9.
- (d) Design a PID compensator $G_c(s)$ such that the closed-loop system has a pole at s=-5.9 and the steady-state error is less than or equal to 0.5 for a unit ramp input.

- 6. (20%) A system has an open-loop transfer function $G(s) = \frac{5}{(s+1)(s+2)}$.
 - (a) Let $y = x_1$ and $\dot{x}_1 = x_2$, find the state equation by writing $\dot{x} = Ax + bu$, y = cx.
 - (b) Find k_1 and k_2 so that $u=-k_1x_1-k_2x_2$ moves the closed-loop system poles to $-1.5\pm1.5j$.
 - (c) Find l_1 and l_2 of a state observer so that the state error equation has characteristic equation with $\omega_n = 15$, $\zeta = 0.5$.
 - (d) Find k_1 and k_2 so that $u = -k_1x_1 k_2x_2$ will minimize the following performance function

$$J = \int_0^\infty \{x_1^2(t) + x_2^2(t) + u^2(t)\} dt.$$