國立成功大學八十三學年度 三科阶 考試(工程數學 試題)第1页

1. (15%)

Consider the problem of

$$c^{\alpha} \gamma_{tt} = \gamma_{xx} + F(x,t)$$
, $(0 \le x \le 1, 0 \le t < \infty)$

$$Y(0,t) = Y(1,t) = 0, Y(x,0) = f(x), Y_t(x,0) = 0$$

Assume the solution of Y(x,t) to be the form

$$Y(x,t) = \sum_{n=1}^{\infty} h_n(t) \sin(n\pi x)$$

What is the solution of hm(t)?

2. (15%)

Find the value of $\int_0^\infty \frac{\cos(ax)}{x^a + b^a} dx , a \ge 0, b \ge 0.$

3. (10%)

Evaluate $\int_{C} (6xy - 4e^{x}) dx + 3x^{4} dy \text{ with } C \text{ any piecewise}$

smooth curve from (0,0) to (-2,1).

4. (10%)

Solve
$$\frac{d}{dt} \begin{Bmatrix} \chi_1 \\ \chi_2 \end{Bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{Bmatrix} \chi_1 \\ \chi_3 \end{Bmatrix} + \begin{Bmatrix} 1 \\ 0 \end{Bmatrix} g(t)$$

 $x_1(0) = 1, x_2(0) = 2$

5. (20%)

For a simple pendulum of length L and mass m. neglecting any frictional effects.

- (a) Derive its equation of motion and discuss its equilibrium points
 - (b) Simplified the equation obtained in (a) to obtain the linearized equation Out + (g/L) o = 0, where o is the angular displacement, g is gravitational acceleration
 - (c) Change the equation obtained in (b) into a system of first

order ordinary differential equations.

(d) Obtain the general solution of the linearized equation of motion and discuss the solution behavior.

國立成功大學八七學年度之科所考試(工程較學 試題)第2页

6. (10%)

For an ordinary diffferential equation,

 $\gamma_{xx} + a_1 \gamma_x + a_2 \gamma = f(x), \qquad 0 \le x \le L$

Given the following conditions, which one is an initial value problem:

- $(a) Y(0) = Y_{x}(0) = C_{1}$
- (b) $Y(0) = C_{*}, Y(L) = C_{3},$
- (c) $Y(0) = C_4$, $Y(L/2) = C_8$,
- (d) $Y(L) = C_8, Y_*(L/2) = C_7$

Discuss briefly what is the difference between initial value problems and boundary value problems.

7. (10%)

What is the advantage of solving a problem by Laplace transform? Under what conditions one can not use Laplace transform? What is the relation (or difference) between Laplace transform and Fourier transform?

8. (10%)

Given a function f(x) as

$$f(x) = 1 - x, \quad 0 \le x \le 1$$

Compare the accuracy of the Fourier series expansion of f(x) by

- a. Treat f(x) as a periodic function
- . b. Treat f(x) as an odd function
 - c. Treat f(x) as an even function

Note: It is not a required condition to find the expansion coefficient.