國立成功大學 83 學年度工程科學微考試(數值分析 試題)第一页

(1) We wish to solve f(x)=0 by using the $x_{n+1}=g(x_n)$ iteration.

- (a) Analyze the iteration error and derive the sufficient condition for the method to converge. (10%)
- (b) Use graphical representation to indicate two cases that the method would diverge and explain your reasons. (4%)
- (2) We wish to solve f(x)=0 by using the Newton's iteration.

(a) Derive the expression for the iteration process. (5%)

- (b) The iteration process of part (a) can find one root at a time. How would you obtain other roots if f(x)=0 has multiple roots? (5%)
- (b) Use graphical representation to indicate three cases that the method would diverge and explain your reasons. (6%)
- (3) Explain consistency, stability, convergence, and the Lax's equivalence theorem in the linear partial difference equation. (10%)
- (4) Briefly describe the following numerical methods for solving a system of equation Ax=b

where A is a n x n matrix, x and b are column vectors.

- (a) The Gaussian elimination method (5%)
- (b) The LU decomposition method (5%)
- (c) The Gauss-Seidel iteration method (5%)
- (d) The successive over relaxation method (5%)
- 5. We want to integrate $\int_{a}^{b} f(x)dx$ numerically by the two-term Gaussian quadrature i.e. $\int_{a}^{b} f(x)dx = c_{1}f(t_{1}) + c_{2}f(t_{2})$. Find c_{1} , c_{2} , t_{1} and t_{2} . Use the above result to evaluate $\int_{0}^{\frac{\pi}{2}} \cos x dx$ and compare the exact result. (20%)
- 6. If we solve the linear equation $\frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} = 0$, u = constant > 0. by the finite-

difference method as $\frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + u \frac{\phi_i^n - \phi_{i-1}^n}{\Delta x} = 0$. Show that the method will render the difference equation back to the differential equation as

 $\frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} = \alpha \frac{\partial^2 \phi}{\partial x^2} + O(\Delta x^2, \Delta t^2)$. Find $\alpha = ?$, Explain the physical meaning of the extra term. (20%)