國立成功大學八十四學年度 开程科学 考試(工程數學 試題)共一頁

- 1. (a) Let U be a unitary matrix, i.e., U-1 = U*. Prove that the eigenvalues of U have absolute value 1. (8%)
 - (b) Let A be an nxn diagonalizable matrix with the characteristic equation

$$\lambda^{n} + a_{n-1}\lambda^{n-1} + \cdots + a_{1}\lambda + a_{0} = 0$$

Prove that

$$A^{n} + a_{n-1}A^{n-1} + \cdots + a_{1}A + a_{0}I_{n} = 0$$

where O is a zero matrix, (8%)

2. Solve the differential equation

$$y'''' - 10y''' + 35y'' - 50y' + 24 = g(t)$$

with the initial conditions

$$y(0) = y'(0) = y''(0) = y'''(0) = 0$$

(10%)

3. Evaluate $\int_{1-\cos\theta/4}^{2\pi} \cos\theta$

(12%)

4. Evaluate the surface integral $\iint_{\Sigma} zd\sigma$

with Σ that part of the plane x + y + z = 4 lying above the rectangle $0 \le x \le 2$, $0 \le y \le 1$. (12%)

- 5. What are linear and nonlinear differential equations? (10%)
- (a) Is the follow equation linear or nonlinear? Why?

$$\frac{\partial \mathbf{v}}{\partial t} = \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{k} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \right)$$

- (b) What is the difference between the solution methods for these two types of equations?
- 6. $\phi(\alpha) = \int_0^1 \frac{x^{\alpha} + 1}{\ln x} dx$

Evaluate (a) $d\phi/d\alpha$ (b) the integration, i.e. $\phi(\alpha)$. (8%)

7. Let ϕ_n be a set of functions orthogonal respect to a weighting function w(x) over a finite internal interval (a, b), which means

$$\int_{a}^{b} w(x)\phi_{m}(x)\phi_{n}(x)dx = \begin{cases} \neq 0 & n = m \\ = 0 & n \neq m \end{cases}$$

If f(x) is written as $f(x) = \sum_{n=0}^{\infty} c_n \phi_n(x)$, derive the expression of b_n and give an example of ϕ_n . (10%)

8. Solve the following equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

with the boundary conditions shown in the following figure. (14%)

9. Find the solution of the following equation. (8%)

$$\frac{dy}{dx} + \frac{1}{x}y = x^3y^3$$