85 學年度 國立成功大學 工经科學研究所 工经数學

1. Evaluate
$$\int_{0}^{\pi} \frac{d\theta}{a + b \cos \theta}, a > b > 0. (10\%)$$

- 2. Find the tangent plane and normal line to the surface $z = \pi^3 y^5$ at the point (2, 1, 8). (10%)
- 3. Find the Laurent series of the function $z/(z^2+z-2)$ on the regions 0 < |z-1| < 3. (10%)
- 4. Given two matrices $M = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ and $K = \begin{bmatrix} 7 & 4 \\ 4 & 8 \end{bmatrix}$, there exists a matrix P such that

$$P^{-1}MP = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } P^{-1}KP = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

Questions:

- (a) What are λ_1 and λ_2 ? (10%)
- (b) What is the matrix P? (10%)

5. Solve
$$\frac{dy}{dx} = \frac{1}{x + y^2}$$
 subject to y(-2) = 0. (10%)

- 6. Solve $x'' + 16x = \cos 4t$ subject to x(0) = 0, x'(0) = 1 by using Laplace transform. (12%)
- 7. Poisson's equation (16%)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -h \qquad h > 0$$

Solve the equation subject to the conditions

The state of the s

$$u(0, y) = 0, u(\pi, y) = 1, y > 0$$

$$u(x, 0) = 0, 0 < x < \pi$$

Hint: as $y \rightarrow \infty$, u has a finite value.

8. Expand $f(x) = x^2$, 0 < x < L, (a) in a Fourier cosine series, (b) in a Fourier sine series. (12%)