图学年度 國立成功大學 工程 科学所 電子電路 試題 第 1 頁

- The circuit shown in Fig. 1 is a BJT monostable multivibrator. When conducting, the transistors are saturated.
 - (a) Sketch the base voltage of Q_1 , V_{S1} , from $t=0^+$, just prior to the application of the trigger, to $t=T^+$, just after the circuit has returned to its stable state. (7.5):
 - (b) Derive an expression for T , the pulse width. (8 \mathcal{F}
- 2. The circuit shown in Fig. 2 is a NAND gate.
 - (a) If $\beta = 25$, what is the fan-out? (7/3)
 - (b) What is the average power dissipated by the gate assuming Y = V(1) 50 percent of the time?

(8分)

- **3.** The transistors Q_1 and Q_2 in Fig. 3 are identical and have eta=200 .
 - (a) Determine I_{c1} and I_{c2} . (8 %)
 - (b) Find R_c so that $V_a = 6V$, (2%)
- 4. For the circuit shown in Fig. 4, both diodes are identical, conducting 10 mA at 0.7 V and 100 mA at 0.8 V. Find the value of R, for which $V_o = 50$ mV, (15.5)
- **5.** The transistors of the circuit in Fig. 5 have the following parameters: For \mathcal{Q}_1 ,

$$I_{DSS} = 4 \text{ mA}$$
, $V_p = -2 \text{ V}$; for Q_2 , $|V_{gg}| = 0.7 \text{ V}$, $\beta = 100$.

- (a) Find the values of R_D , R_E , R_L to operate Q_1 at $I_D=1$ mA and Q_2 at $I_C=9$ mA and to establish a do voltage of #13.5 V at the drain of Q_3 . Assume that V_x has a zero do component, (10%)
- (b) Calculate the value of $A_f = V_a / V_a$. (10%)
- Design a Butterworth filter that meets the following low-pass specifications:

$$f_p = 10 \,\mathrm{kHz}$$
, $f_a = 15 \,\mathrm{kHz}$, $A_{\mathrm{max}} = 2 \,\mathrm{dB}$ and $A_{\mathrm{min}} = 15 \,\mathrm{dB}$.

- (a) Find the required order N , the natural modes, and transfer function T(x) . (15.5)
- (b) What is the attenuation provided at 20 kHz. (5分)

