- 1. Steam is the working fluid in an ideal Rankine cycle as shown in Fig.1. Saturated vapor enters the turbine at 80.0 bers and saturated liquid exits the condenser at a pressure of 0.08 bar. The net power output of the cycle is 100 MW. The turbine and the pump each have an isentropic efficiency of 65%. The heat exchanger unit of the boiler has a stream of water entering as a liquid at 80.0 bars and exiting as a saturated vapor at 80.0 bars. In a separate stream, gaseous products of combustion cool at a constant pressure of 1 atm from 1107 to 547°C. The gaseous stream can be modeled as air as an ideal gas. Let T₀=22°C, p₀= 1 atm. The condenser involves separate water streams. In one stream a two-phase liquid-vapor mixture enters at 0.08 bar and exits as a saturated liquid at 0.08 bar. In the other stream, cooling water enters at 15°C and exits at 35°C. Determine for the cycle
- (a) the thermal efficiency, (8%)
- (b) the mass flow rate of the steam, in kg/h, (8%)
- (c) the rate of heat transfer, \hat{Q}_{in} into the working fluid as it passes through the boiler, in MW, (8%)
- (d) the rate of heat transfer, \hat{Q}_{oo} from the condensing steam as it passes through the condenser, in MW, (8%)
- (e)the mass flow rate of the condenser cooling water, in kg/h, (8%)
- (f) the net rate at which availability is carried into the heat exchanger unit by the gas stream, in MW, (5%)
- (g) the net rate at which availability is carried from the heat exchanger by the water stream, in MW, (5%)
- (h) the net rate at which availability is carried from the condenser by the cooling water, in MW. (5%)
- (i) the rate at which availability is destroyed, in MW, from the turbine and the pump, (5%)
- (j) the irreversibility rate, in MW, of the condenser and the heat exchanger, (5%)
- (k) the second law efficiency of the heat exchanger, (5%)
- (i) each of the components in the plant the rate at which availability is destroyed, in MVV, express each result as a percentage of the availability entering the plant with the fuel. (10%)

(W purity transports = V Ap)

- (a) Describe the Brayton cycle and write down its efficiency in terms of the pressure. (10%)
 - (b) In order to promote its efficiency, could you propose your suggestion to madify
 it? (10%)

Table 1 Properties of Saturated Water (Liquid-Vapor)

Total 1 Taparios Si esternita Table (anima)									
$\overline{}$		Specific Votume		Internal Energy		Enthalpy		Entropy	
ļ		m ^a /kg		K,#kg		_ KJ/kg		KJ <u>ikg.K</u>	
Tema.	Press.	Sat.	SaL	Sat.	Şat.	Sat.	Sat.	Sat.	Sat.
'c	para	Liquid	Vapor	Liguid	Vapor	Liquid	Vapor	Liquid	Vapor
<u> </u>	l :	VX101	V.	u,x10°	u.	h _i x10 ⁸	h,	<u>sx10³</u>	ŝ,
15	0.01705	1.0009	77.926		2396.1		2528.9		
35	0.05628		25.216	146.67	2423.4	146.68	2 565 <u>,3</u>	0.5053	8.3531
41.51	0.08	1.0084	18,103	173.87	2432,2	173,88	2577.0	0.5926	8.2287
295.1	80.0	1,3842	0.02352	1305.6	2569.8	1316.6	275B.0	3.2068	5.7432

Table 2 Properties of Compressed Liquid Water

Press.	Enthalpy	Entropy		
Bars	KJ/kg	KJ/kg.K		
80.0	183.36	0.5957		

Table 3 Ideal Gas Properties of Air

	T(K), h and u (kJ/kg), s ^o (kJ/kg.K)							
ļ	Ţ	h	ü	5°				
	3 20	843,98	608.59	2,7 <u>4504</u>				
1	1380	1491.44	1095,26	3.34474				

Figure 1. Power plant schematic for the availability analysis case study.