89 學年度 國立成功大學 工行科學 系 工程 松学 試題 共 - 頁 第 - 頁

1.15%

(a) Prove the Laplace Convolution Theorem: If $L\{f(t)\} = F(s)$ and $L\{g(t)\} = G(s)$

both exist for s>c, then $L\{\int_{0}^{t} f(\tau)g(t-\tau)d\tau\} = F(s)G(s)$, or equivalently,

$$L^{-1}\{F(s)G(s)\} = \int_{0}^{t} f(\tau)g(t-\tau)d\tau. \quad (10\%)$$

(b) Using (a), find
$$L^{-1}\left\{\frac{3}{s^2+3s-10}\right\} = ?$$
 (5%)

2.15%

- (a) What is the Gibbs phenomenon in a Fourier series expansion? (5%)
- (b) Expand $f(x) = x^2$, $0 < x < 2\pi$ if its period is 2π . (5%)

(c) Prove that
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$
 (5%)

3.20%

- (a) Briefly describe the Residue Theorem. (8%)
- (b) Use the residue theorem to evaluate the following integral counterclockwise around any simple closed path such that (1) 0 and 1 are inside C, (2) 0 is inside, 1 is outside, (3)0 is outside, 1 is inside, (4) 0 and 1 are outside.
 \[
 \int \frac{4-3z}{z^2-z} dz
 \]
 (12%)

4. (a) State the Divergence theorem of Gauss

(b) Use the Divergence theorem to evaluate the following surface integral

$$I = \iint (x^3 dy dz + x^2 y dz dx + x^2 z dx dy)$$

where s is the closed surface consisting of the cylinder $x^2 + y^2 = a^2$

 $(0 \le z \le b)$ with the circular disks at z = 0 and $z = b (x^2 + y^2 \le a^2)$ ---14%

5. Solve
$$y \frac{d^2 y}{dx^2} - (\frac{dy}{dx})^2 - y^2 \frac{dy}{dx} = 0$$
 ---14%

6. Solve
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 with $u_x(0,t) = 0$, $u_x(L,t) = 0$, and $u(x,0) = f(x)$ ---22%