
89 學年度 國立成功大學 工程科學系 熱力學 試題 共 2 頁 新 項 項 サ 2 頁 第 1 頁

- 1. One mole of gas obeys Van der Waals equation of state, $(p+a/V^2)(V-b) = RT$. If its molar internal energy is given by u = cT a/V (in which V is the molar volume, a is one of the constants in the equation of state, and c is a constant), calculate the molar heat capacities C_v and C_p . (20%)
- 2. One mole of a monatomic perfect gas initially at temperature T_0 expands from V_0 volume to $2V_0$, (a) at constant temperature, (b) at constant pressure. Calculate the work of expansion and heat absorbed by the gas in each case. (20%)
- 3. A body of constant heat capacity C_p and a temperature T_i is put into contact with a reservoir at temperature T_f . Equilibrium between the body and the reservoir is established at constant pressure. Determine the total entropy change and prove that it is positive for either sign of $(T_f T_i)/T_f$. You may regard $|T_f T_i|/T_f < 1$. (20%)

- 4. (a) Derive the expression for the efficiency of a Carnot engine directly from a TS diagram.
 - (b) Compare the efficiencies of cycles A and B of the following figures. (20%)

5. The state of a new matter is $p = AT^3/V$, where p, V and T are the pressure, volume and temperature, respectively, A is a constant. The internal energy of the matter is

$$U = BT^n \ln(V/V_0) + f(T)$$

where B, n and V_o are all constants, f(T) only depends on the temperature. Find B in term of A, and the value of n. (20%)