- 1. Find and sketch the voltage transfer characteristic of the circuit shown in Fig. 1, assuming that the diodes have a constant 0.7 V drop when conduct. (15 分)
- 2. The CMOS circuit is shown in Fig. 2 for which Q_1 has parameters g_{m1} and r_{o1} and Q_2 has g_{m2} and r_{o2} . Find $A_V = V_o / V_s$. (15 分)
- 3. For the CMOS monostable circuit shown in Fig. 3, sketch v_{o1} , v_{o2} , v_R and determine the pulse duration. (15分)
- A circuit is shown in Fig. 4, determine the value of v_o . (15 %)
- 5. For the circuit in Fig. 5 in which the transistors have $V_{BE} = 0.7 \text{ V}$ and $\beta = 100$, find v_o/v_i and R_{in} .
- 6. An amplifier having a low-frequency gain of 10^3 and poles at 10^4 and 10^5 Hz is operated in a closed negativefeedback loop with a frequency-independent β .
 - (a) For what value of β do the closed-loop poles become coincident? At what frequency? (7 β)
 - (b) What is the low-frequency gain corresponding to the situation in (a)?
 - (c) What is the value of pole Q factor corresponding to the situation in (a)?
 - (d) If β is increased by a factor of 10, what are the new pole locations? What is the corresponding pole Q factor?

Fig. 2

Fig. 3

Fig. 4

Fig. 5