The following data is listed as

х	1	2	3	4
у	3	5	6	2

Questions:

- (a) Set up the Lagrange polynomial such that $y(x_i) = y_i$. (5%)
- (b) Further, what are the values of a and b in y = ax + b to least square approximate the data listed in the table. (5%)
- 2. A sphere is defined by $x^2 + y^2 + z^2 = a^2$. Calculate the surface area of sphere intersected by the cylinder $0 \le x^2 + y^2 \le b^2$ and $z \ge 0$, where b < a. (15%)
- 3. What is the solution y(t) for the problem y'' + (a+b)y + aby = f(t), y(0) = c and $y'(0) = d \cdot (15\%)$
- 4. Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx \quad a, \ b \text{ positive.} \quad (15\%)$$

5. The equation is given as

$$X^2 - 4X + 4I = A$$
, $A = \begin{bmatrix} 4 & 3 \\ 5 & 6 \end{bmatrix}$.

Questions:

- (a) What are eigenvalues and the corresponding eigenvectors of A? (10%)
- (b) What are the solutions of X? (15%)

6. Suppose $U_1(x, y)$ to be the solution of the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad , \quad 0 \le x, y \le a \, ,$$

with the boundary conditions

$$u(x,0) = g(x)$$
, $u(x,a) = 0$, $u(0,y) = 0$, $u(a,y) = 0$.

Questions:

- (a) What is the solution $U_2(x, y)$ in terms of $U_1(x, y)$ for these boundary conditions u(x,0) = 0, u(x,a) = g(x), u(0,y) = 0, u(a,y) = 0? (5%)
- (b) What is the solution $U_3(x, y)$ in terms of $U_1(x, y)$ for these boundary conditions u(x,0) = 0, u(x,a) = 0, u(0,y) = g(y), u(a,y) = 0? (5%)
- (c) What is the solution $U_4(x, y)$ in terms of $U_1(x, y)$ for these boundary conditions u(x,0) = 0, u(x,a) = 0, u(0,y) = 0, u(a,y) = g(y)? (5%)
- (d) What is the solution $U_5(x, y)$ in terms of $U_1(x, y)$ for these boundary conditions u(x,0) = g(x), u(x,a) = 3g(x), u(0,y) = 2g(y), u(a,y) = 4g(y)? (5%)