92學年度國立成功大學工程科學學系甲紀

電子電路

- 1. (a) Figure 1 shows a noninverting amplifier utilizing a single internally-compensated op amp. The gain of the op amp may be expressed as $A(s) = A_o / (1 + \frac{s}{\omega_b})$, where A_o and ω_b are the dc gain and 3-dB frequency, respectively. Derive the 3-dB frequency of the noninverting amplifier. (14 $\frac{1}{2}$)
 - (b) Redesign the amplifier by cascading three identical noninverting amplifiers. Each noninverting amplifier is the same as Fig. 1. Derive the 3-dB frequency of the overall amplifier. (6分)

Fig. 1

- 2. For the circuit shown in Fig. 2, both diodes are identical, conducting 10 mA at 0.7 V and 100 mA at 0.8 V. In the forward region the $i_D \nu_D$ relationship of the diode is approximated by $i_D = I_S e^{\nu_D/\pi V_T}$, where I_S the saturation current and $V_T = 25 \,\mathrm{mV}$.
 - (a) Determine n and I_s . (6分)
 - (b) Find the value of R, for which $V_o = 0.15 \text{ V}$. (14 %)

Fig. 2

- 3. A circuit is shown in Fig. 3. The BJT has $\beta = 200$ and neglect the effect of r_0 .
- (a) Find the dc emitter current, g_{π} and r_{π} of the BJT. (5 %)
- (b) Replace the BJT with its hybrid- π model and determine the input resistance R_i . (5 %)

(c) Determine the voltage gain ν_a/ν_a . (10 分)

Fig. 3

4. Determine a Butterworth filter transfer function T(s) that meets the specifications shown in Fig. 4. (20 $\frac{1}{2}$)

Fig. 4

5. Determine the transfer function $V_o(s)/V_i(s)$ in Figs. 5(a) and 5(b). (20 $\frac{1}{2}$)

Fig. 5(a)

Fig. 5(b)