93學年度國立成功大學 工程科學學系 乙組 計

共 之 頁 第 月 頁

- 1. (20%)Determine whether each statement in the following is true or false. If the statement is false, give a counter example.
 - (1) Let R and S be relations on X. If R and S are transitive, then $R \cup S$ is transitive.
 - (2) Assume that the functions f, g and h take only positive values, $f(n) + g(n) = \Theta(h(n))$, where $h(n) = \min \{f(n), g(n)\}$, $(\Theta(h(n)))$ is theta notation)
 - (3) The set $L = \{ x_1...x_n \mid x_1...x_n = x_n...x_l \}$ of strings over $\{a,b\}$ is a regular language.
 - (4) If the capacity of a cut in a network is equal to C_a , then the value of some flow is greater than or equal to C_a .
 - (5) Consider a "shortest-path algorithm" in which at each step we select an available edge having minimum weight incident on the most recently added vertex. This algorithm will always find a shortest path.
- 2. Answer the following questions briefly.
 - (1) Represent the prefix expression * E / B D C A as a binary tree. Also write the postfix form and the fully parenthesized infix form of the expression.(10%)
 - (2) The n-cube has 2^n vertices, $n \ge 1$. An edge connects two vertices if the binary representation of their labels differs in exactly one bit. The n-cube may also be described recursively. The 1-cube has two vertices, label 0 and 1, and one edge. Let H_1 and H_2 be two (n-1)-cubes whose vertices are labeled in binary $0,\ldots,2^{n-1}$ -1. We place an edge between each pair of vertices, one from H_1 and one from H_2 , provided that the vertices have identical labels. (a)Draw a 3-cube and find a Hamiltonian cycle in the 3-cube. (b) Prove that the n-cube is bipartite for all $n \ge 1$. (10%).
 - (3) If a binary tree of height h has $n \ge 1$ vertices, then $\lg n < h+1$. (5%)
 - (4) Evaluate the root of the tree using depth-first search with alpha-beta pruning. Assume that children are evaluated left to right. For each vertex whose value is computed, write the value in the vertex. Place a check by the root of each subtree that is pruned. The value of each terminal vertex is written under the

vertex.(10%)

(背面仍有題目,請繼續作答)

- 3. (1) Design a circuit that multiplies the binary numbers x_2x_1 and y_2y_1 . The output will be of the form $z_4z_3z_2z_1$. (10%)
 - (2) Explain how to construct a nondeterministic finite-state automaton that accepts the language $L_1L_2 = \{ \alpha \beta \mid \alpha \text{ belongs to } L_1, \beta \text{ belongs to } L_2 \} (10\%)$
 - (3) Given a function defined by the recurrence relations

```
A(m,0) = A(m-1), m = 1,2,...

A(m,n) = A(m-1, A(m,n-1)), m=1,2,...; n=1,2,...

And the initial conditions A(0,n) = n + 1, n = 0, 1, ...

Prove that A(2,n) = 3 + 2n, n=0,1,...(10\%)
```

4. Given an algorithm as follows.

```
input: a sequence s_1, s_2, ..., s_n of zeros and ones output: s_1, ..., s_n where all the zeros precede all the ones procedure sort(s,i,j) if i=j then return if s_i=1 then begin.

Swap(s_i,s_j) //exchange the positions of s_i and s_j Call sort(s,i,j-1) end else

Call sort(s,i+1,j) end sort.
```

- (1) Prove that *sort* does produce as output a arranged version of the input sequence in which all of the zeros precede all of the ones.(5%)
- (2) Let b_n denote the number of times sort is called when the input sequence contains n items. Write a recurrence relation for b_n .(5%)
- (3) Solve your recurrence relation of b_n .(5%)