
93學年度國立成功大學 工程科學學系 甲組 電子電路 共三頁 試題 第一頁

1. (20%) (a) (5%) The amplifier in a feedback circuit as shown in Fig. 1(a) has a transfer function of

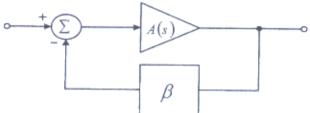


Fig. 1(a)

What value of β will increase the upper -3 db frequency by a factor of 10 for the closed-loop circuit? What is the low frequency gain of the closed-loop circuit?

(b) (15%) (i) Please find the transfer function, V_{out}(s)/V_{in}(s), of the circuit as shown in Fig. 1(b) and identify the location of the poles and zeros. (ii) Sketch the asymptotic (straight-line) plot for the magnitude of the transfer function. (iii) What is the gain in the region where the transfer function is independent of frequency?

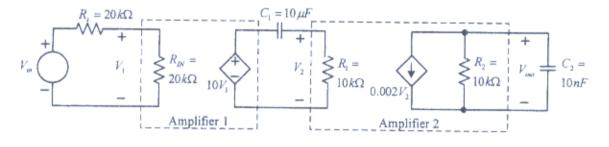


Fig. 1(b)

2. (20%) Assume that the op amps are ideal in the circuit as shown in Fig. 2; please find $i_{out}/(v_1 - v_2)$ and the input resistance defined as $R_{in} = (v_2 - v_1)/i_{in}$.

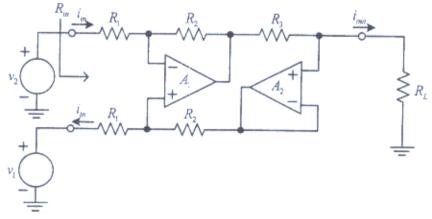


Fig. 2 (背面仍有題目,請繼續作签)

93舉在度國立成功大學	工程科學學系 甲組 電子電路	21: 85
50千千及研究所招生考試	龙祖	試題

3. (20%) A shunt-shunt feedback amplifier is shown in **Fig. 3.** Please use the methods of feedback analysis to find the values of v_2/v_1 , v_1/i_1 and v_2/i_2 . Assume that all transistors are matched and that $V_T = 25mV$, $\beta = 100$ (of the BJT),

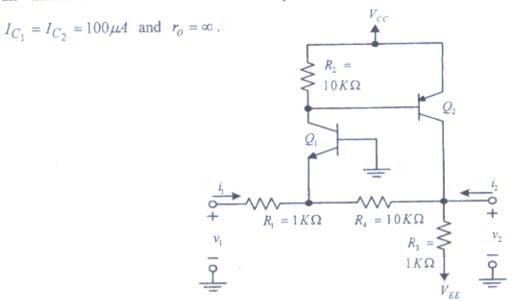


Fig. 3

4. (20%) A pnp BJT circuit is shown in **Fig. 4**. (a) Find the dc values of I_E , I_C , I_B , V_E , V_C and V_B if $\beta = 50$ and $V_{EB}(on) = 0.65$. (b) For what value of R_C does the BJT become saturated?

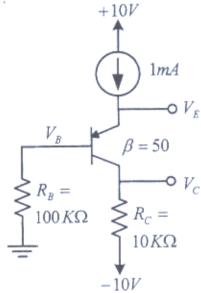


Fig. 4

5. (20%) Assume that the op amp is ideal and the diodes have a drop voltage $V_D=0.7V$ in the circuit of Fig. 5. (a) Please find and sketch the voltage transfer $(V_o \text{ with respect to } V_i)$ characteristics of the circuit. (b) If $V_i(t)=15\sin(2\pi\,t)$, please plot the output voltage $V_o(t)$ in the time domain.

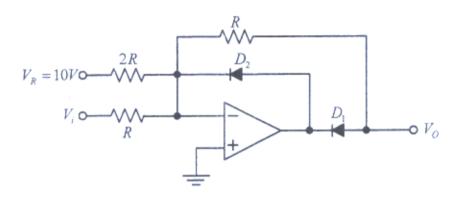


Fig. 5