93學年度國立成功大學 工程科學學系

程科學學系 甲組 工程數

共 / 頁 試題 第 / 頁

學年度研究所招生考試 天, 丁, 丁

- 1. Solve $x \frac{dy}{dx} + y = 0$ by a series method. (10)
- 2. Given a periodic function with a period of 2 as follows: f(x) = 1, 0 < x < 1; f(x) = 0, -1 < x < 0. Find the following Fourier series parts: (20)
 - a. a₀
 - b. a.
 - c. b.
 - d. f(0)
- 3. If $f(x) = \frac{d}{dx} \int_{x}^{3x} e^{y^2} dy$, find f(x). (10)
- 4. Give a general definition of orthogonal functions. Show that Legendre polynomials satisfying $(1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + m(m+1)y = 0$ are orthogonal functions. (15)
- 5. Find the eigenvalues and eigenvectors of $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Verify whether the eigenvectors are orthogonal or not. If they are not orthogonal, make them orthogonal. (20)
- 6. Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ with conditions only given as u(x,0) = x and $\frac{\partial u(x,0)}{\partial x} = 1$. (15)
- 7. Solve $\frac{dy}{dt} + y = \delta(t)$ where $\delta(t)$ is Dirac delta function. (10)