編號: E 213 系所: 工程科學系甲組, 戊組, 乙組, 科目: 電子電路

按題目順序書寫答案

- 1. For $V_{DD}=2\,\mathrm{V}$ and using $I_{REF}=50~\mu\mathrm{A}$, it is required to design the circuit of Fig. 1 to obtain an output current whose nominal value is $300~\mu\mathrm{A}$.
- (a) Find R if Q_1 has channel length of 0.5 μ m, channel width of 5 μ m, $V_1 = 0.5$ V and $k'_n = 250 \ \mu\text{A/V}^2$, and Q_2 has channel length of 0.5 μ m, channel width of 30 μ m, $V_1 = 0.5$ V and $k'_n = 250 \ \mu\text{A/V}^2$. (7 $\frac{1}{2}$)
- (b) What is the lowest possible value of V_0 ? (5 分)
- (c) Assuming the Early voltage $V_A = 20 \text{ V}$, find the change in output current resulting from +1 V change in V_o . (8 \Re)

Fig. 1

- 2. A wave generator is shown in Fig. 2. The zener voltage is 6.8 V. The resistors $R_1=50~{\rm k}\Omega$, $R_2=100~{\rm k}\Omega$, $R_3=R_4=R_5=R_6=10~{\rm k}\Omega$, $R_7=5~{\rm k}\Omega$ and $C=0.1~\mu{\rm F}$.
 - (a) Sketch and label the waveforms v_A , v_B and v_O . (15分)
 - (b) Determine the frequency of v_o . (5分)

編號: 6 213 系所: 工程科學系甲組

科目:電子電路

- 3. An amplifier circuit shown in Fig. 3 employs an op ampl having a dc gain of 1000 V/V and 3-dB frequency of 1000 rad/s, and an op amp 2 having a dc gain of 1000 V/V and 3-dB frequency of 2000 rad/s.
 - (a) What is the 3-dB frequency of the amplifier circuit? (17分)
 - (b) What is the voltage gain of the amplifier circuit at 10^5 rad/s? (3分)

Fig. 3

4. For the voltage-regulator circuit shown in Fig. 4, all diodes are identical with n=2, conducting 10 mA at 0.7 V and 100 mA at 0.8 V. If the supply voltage $V_S = 10 + 0.67 \sin 1000t$ V, what is the output voltage V_O ? (20 分)

Fig. 4

5. Consider the class AB output stage shown in Fig. 5 in which Q_2 and Q_4 are matched transistors with $V_{BE}=0.7~\rm V$ at 10 mA and $\beta=100$, Q_1 and Q_5 have $V_{BE}=0.7~\rm V$ at 1 mA and $\beta=100$, and Q_3 has $V_{EB}=0.7~\rm V$ at 1 mA and $\beta=10$. Design the circuit for a quiescent current of 2 mA in Q_2 and Q_4 , I_{BIAS} that is 100 times the standby base current in Q_1 , and a current in Q_5 that is 9 times that in the associated resistors. Find the values of R_1 and R_2 . (20 \triangle)

Fig. 5